scholarly journals 33. Evaluation and comparison of surface roughness levels, surface wettability, and surface configuration of commercially pure titanium surface

2018 ◽  
Vol 18 (6) ◽  
pp. 66 ◽  
Author(s):  
VVijayshankar Yadav
Author(s):  
Karibeeran Shanmuga Sundaram ◽  
Gurusami Kiliyappan ◽  
Senthil Kumaran Selvadurai

Laser shock peening (LSP) is one of the innovative technique that produces a compressive residual stress on the surface of metallic materials, thereby significantly increasing its fatigue life in applications where failure is caused by surface-initiated cracks. The specimens were treated with laser shock waves with different processing parameters, and characterization studies were made on treated specimens. The purpose of the present study was to investigate the influence of Nd:YAG laser on commercially pure titanium (CP-Ti) used in prosthetic dental restorations. The treatment influenced change in microstructure, micro hardness, surface roughness, and wear resistance characteristics. Though CP-Ti is considered as an excellent material for dental applications due to its outstanding biocompatibility, it is not suitable when high mastication forces are applied. In the present study, pulsed Nd:YAG laser surface treatment technique was adopted to improve the wear resistance of CP-Ti. The wear test pin specimens of CP-Ti were investment cast with centrifugal titanium casting machine. The wear properties of specimens were evaluated after LSP on a “pin-on-disc” wear testing tribometer, as per ASTM G99-05 standards. The results of the wear experiment showed that the treated laser surface has higher wear resistance, micro hardness, and surface roughness compared to as-cast samples. The improvement of wear resistance may be attributed due to grain refinement imparted by LSP processes. The microstructure, wear surfaces, wear debris, and morphology of the specimen were analyzed by using optical electron microscope, scanning electron microscope, and X-ray diffraction (XRD). The data were compared using ANOVA and post-hoc Tukey tests. The characteristic change resulted in increase in wear resistance and decrease in wear rate. Hence, it is evident that the more reliable and removable partial denture metal frameworks for dental prostheses may find its applications.


2014 ◽  
Vol 8 (1) ◽  
pp. 114-119 ◽  
Author(s):  
In-Sung Yeo

Screw-shaped endosseous implants that have a turned surface of commercially pure titanium have a disadvantage of requiring a long time for osseointegration while those implants have shown long-term clinical success in single and multiple restorations. Titanium implant surfaces have been modified in various ways to improve biocompatibility and accelerate osseointegration, which results in a shorter edentulous period for a patient. This article reviewed some important modified titanium surfaces, exploring the in vitro, in vivo and clinical results that numerous comparison studies reported. Several methods are widely used to modify the topography or chemistry of titanium surface, including blasting, acid etching, anodic oxidation, fluoride treatment, and calcium phosphate coating. Such modified surfaces demonstrate faster and stronger osseointegration than the turned commercially pure titanium surface. However, there have been many studies finding no significant differences in in vivo bone responses among the modified surfaces. Considering those in vivo results, physical properties like roughening by sandblasting and acid etching may be major contributors to favorable bone response in biological environments over chemical properties obtained from various modifications including fluoride treatment and calcium phosphate application. Recently, hydrophilic properties added to the roughened surfaces or some osteogenic peptides coated on the surfaces have shown higher biocompatibility and have induced faster osseointegration, compared to the existing modified surfaces. However, the long-term clinical studies about those innovative surfaces are still lacking.


2012 ◽  
Vol 23 (5) ◽  
pp. 496-501 ◽  
Author(s):  
Marcelo Bighetti Toniollo ◽  
Rodrigo Galo ◽  
Ana Paula Macedo ◽  
Renata Cristina Silveira Rodrigues ◽  
Ricardo Faria Ribeiro ◽  
...  

The effects of fluoride, which is present in different oral hygiene products, deserve more investigation because little is known about their impact on the surface of titanium, which is largely used in Implantology. This study evaluated the surface of commercially pure titanium (cpTi) after exposure to different concentrations of sodium fluoride (NaF). The hypothesis tested in this study was that different concentrations of NaF applied at different time intervals can affect the titanium surface in different ways. The treatments resulted in the following groups: GA (control): immersion in distilled water; GB: immersion in 0.05% NaF for 3 min daily; GC: immersion in 0.2% NaF for 3 min daily; GD: immersion in 0.05% NaF for 3 min every 2 weeks; and GE: immersion in 0.2% NaF for 3 min every 2 weeks. The experiment lasted 60 days. Roughness was measured initially and every 15 days subsequently up to 60 days. After 60 days, corrosion analysis and anodic polarization were done. The samples were examined by scanning electron microscopy (SEM). The roughness data were analyzed by ANOVA and there was no significant difference among groups and among time intervals. The corrosion data (i corr) were analyzed by the Mann-Whitney test, and significant differences were found between GA and GC, GB and GC, GC and GD, GC and GE. SEM micrographs showed that the titanium surface exposed to NaF presented corrosion that varied with the different concentrations. This study suggests that the use of 0.05% NaF solution on cpTi is safe, whereas the 0.2% NaF solution should be carefully evaluated with regard to its daily use.


2007 ◽  
Vol 330-332 ◽  
pp. 333-336 ◽  
Author(s):  
Xiao Xiao Cai ◽  
Ping Gong ◽  
Yi Man ◽  
Zhi Qing Chen ◽  
Gang He

This research was aimed at the construction and characterization of nano-FHA bioceramic coating on titanium surface. Nano-FHA coating was constructed on the surface of commercially pure titanium by sol-gel route. X-ray diffraction (XRD), scanning electromicroscope (SEM) and dissolution test was employed to characterize the obtained coating. In vitro cellular responses of osteoblasts to the coating were also evaluated by MTT assay, ALP assay and SEM observation. Conventional HA coatings and commercially pure titanium (cpTi) were taken as control. Results show the nano-FHA bioceramic coating has good crystallization and homogeneous, nano-scale surface morphology. The dissolution rate of the coating is favorable. The in vitro osteoblasts culture exhibits satisfactory bioactivity.


2020 ◽  
Vol 861 ◽  
pp. 23-27
Author(s):  
Wisan Charee ◽  
Viboon Tangwarodomnukun

Underwater laser machining process is a material removal technique that can minimize thermal damage and offer a higher machining rate than the laser ablation in ambient air. This study applied the underwater method associated with a nanosecond pulse laser for turning a commercially pure titanium rod. The effects of laser power, surface speed and number of laser passes on machined depth and surface roughness were investigated in this work. The results revealed that a deeper cut depth and smoother machined surface than those obtained from the laser ablation in ambient air were achievable when the underwater laser turning process was applied. The machined depth and surface roughness were found to significantly increase with the laser power and number of laser passes. The findings of this study can disclose the insight as well as potential of the underwater laser turning process for titanium and other similar metals.


2003 ◽  
Vol 12 (2) ◽  
pp. 182-187 ◽  
Author(s):  
Edmur Pereira Buzzá ◽  
Jamil Awad Shibli ◽  
Roberto Henrique Barbeiro ◽  
José Ricardo de Albergaria Barbosa

2012 ◽  
Vol 159 ◽  
pp. 56-68 ◽  
Author(s):  
Anish Kumar ◽  
Vinod Kumar ◽  
Jatinder Kumar

Titanium is present in the earth’s crust at a level about 0.6% and is therefore the fourth most abundant structural metal after aluminum, iron, and magnesium. High strength, low density, and excellent corrosion resistance are the main properties that make titanium attractive for a variety of applications. The major application of the material is in the aerospace industry, both in airframes,engine components,steam turbine blades, superconductors, missiles etc. or corrosion resistance, for example marine services, chemical, petrochemical, electronics industry, biomedical instruments etc.In this study, wire electrical discharge machining (WEDM) is adopted in machining of commercially pure titanium (Grade-2). During experiments, parameters such as Pulse on time, Pulse off time, Peak current, Spark Gap set Voltage, Wire Feed and Wire Tension were changed to explore their effect on the cutting rate, gap current and surface roughness of the machined specimens. The ranges of process parameters for the experiments were decided on the basis of literature survey and the pilot experiments conducted using one factor at a time approach(OFTA). It is found that the intensity of the process energy does affect the cutting rate, gap current and surface roughness as well as, the wire speed, wire tension and dielectric fluid pressure not seeming to have much of an influence.


Sign in / Sign up

Export Citation Format

Share Document