Commentary - Distinct patterns of circulating endothelial cells in pulmonary hypertension

PVRI Review ◽  
2010 ◽  
Vol 2 (2) ◽  
pp. 91
Author(s):  
Swapna Menon
2019 ◽  
Vol 9 (3) ◽  
pp. 204589401986435 ◽  
Author(s):  
Djuro Kosanovic ◽  
Ujjwal Deo ◽  
Henning Gall ◽  
Balachandar Selvakumar ◽  
Susanne Herold ◽  
...  

It has been shown previously that increased circulating endothelial cells-derived extracellular vesicles represent an important pathological attribute of pulmonary hypertension. Although it is a well-known fact that inflammatory cells may also release extracellular vesicles, and pulmonary hypertension is a disease associated with abnormal inflammation, there is no profound knowledge with regard to the role of inflammatory cells-derived extracellular vesicles. Therefore, our study demonstrated that circulating levels of extracellular vesicles derived from T-cells are enhanced in various pulmonary hypertension forms and that endothelial cells-derived extracellular vesicles may have distinctive profiles in different clinical subgroups of pulmonary hypertension, which still remains as a poorly treatable and life-threatening disorder.


2010 ◽  
Vol 36 (6) ◽  
pp. 1284-1293 ◽  
Author(s):  
D. M. Smadja ◽  
L. Mauge ◽  
O. Sanchez ◽  
J.-S. Silvestre ◽  
C. Guerin ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e65114 ◽  
Author(s):  
Marilyne Levy ◽  
Damien Bonnet ◽  
Laetitia Mauge ◽  
David S. Celermajer ◽  
Pascale Gaussem ◽  
...  

2003 ◽  
Vol 90 (10) ◽  
pp. 698-703 ◽  
Author(s):  
Heiko Golpon ◽  
Robert Hebbel ◽  
Anna Solovey ◽  
Carlyne Cool ◽  
Rubin Tuder ◽  
...  

SummaryThe pulmonary endothelium plays a significant role in the pathobiology of Primary Pulmonary Hypertension. A number of diseases, related by a history of vascular injury, are associated with increased numbers of circulating endothelial cells (CECs). We hypothesized that patients with pulmonary hypertension would also have an increased number of circulating endothelial cells due to the high pressures and increased shear stress present within the pulmonary vasculature. We isolated the CECs from 14 patients with pulmonary hypertension, (5 primary and 11 secondary) and compared them to the cells from 12 normal controls. There was a significant increase in the number of CECs in peripheral blood in patients with both PPH and secondary pulmonary hypertension (SPH) when compared to normal volunteers (33.1 +/- 1.9 {PPH} and 27.2 +/- 6.9 {SPH} vs. 3.5 +/- 1.3 {controls}, p < 0.001). The number of circulating endothelial cells in the patient’s peripheral blood correlated significantly with the systolic, diastolic and mean pulmonary artery pressures of the individual. Approximately 50% of the CECs from patients with pulmonary hypertension expressed CD36, a marker of microvascular origin and 25% expressed E-selectin, a marker of endothelial cell activation. Although the origin of the CECs in patients with PH requires further investigation, one possible source is the pulmonary vasculature, and in patients with plexogenic pulmonary hypertension, the plexiform lesions. CECs may provide a non-invasive mean of accessing cells important to the pathobiology of severe pulmonary hypertension.


2021 ◽  
Vol 22 (15) ◽  
pp. 8088
Author(s):  
Tan Phát Pham ◽  
Anke S. van Bergen ◽  
Veerle Kremer ◽  
Simone F. Glaser ◽  
Stefanie Dimmeler ◽  
...  

Endothelial cells can acquire a mesenchymal phenotype through a process called Endothelial-to-Mesenchymal transition (EndMT). This event is found in embryonic development, but also in pathological conditions. Blood vessels lose their ability to maintain vascular homeostasis and ultimately develop atherosclerosis, pulmonary hypertension, or fibrosis. An increase in inflammatory signals causes an upregulation of EndMT transcription factors, mesenchymal markers, and a decrease in endothelial markers. In our study, we show that the induction of EndMT results in an increase in long non-coding RNA AERRIE expression. JMJD2B, a known EndMT regulator, induces AERRIE and subsequently SULF1. Silencing of AERRIE shows a partial regulation of SULF1 but showed no effect on the endothelial and mesenchymal markers. Additionally, the overexpression of AERRIE results in no significant changes in EndMT markers, suggesting that AERRIE is marginally regulating mesenchymal markers and transcription factors. This study identifies AERRIE as a novel factor in EndMT, but its mechanism of action still needs to be elucidated.


Sign in / Sign up

Export Citation Format

Share Document