scholarly journals Comparative Assessment of Peritoneal Membrane Characteristics in Patients on Continuous Ambulatory Peritoneal Dialysis Using Standard Peritoneal Equilibration Test and Fast Peritoneal Equilibration Test

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Aman Gupta ◽  
Pradeep Deshpande ◽  
G Sridhar ◽  
J Ramashankar
Nephron ◽  
1986 ◽  
Vol 44 (3) ◽  
pp. 204-211 ◽  
Author(s):  
N. Di Paolo ◽  
G. De Sacchi ◽  
M. De Mia ◽  
E. Gaggiotti ◽  
L. Capotondo ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Yael Einbinder ◽  
Keren Cohen-Hagai ◽  
Sydney Benchetrit ◽  
Tali Zitman-Gal

Abstract Background and Aims Peritoneal dialysis (PD) is a common used method for renal replacement therapy. Prolonged PD treatment causes structural and functional changes in the peritoneal membrane which are attributed to local inflammatory process in the peritoneal cavity. Galectin-3 (Gal-3) is a galactoside-binding lectin with pro-inflammatory and pro-fibrotic effects. The aim of this study was to assess correlation between Gal-3 serum and dialysate effluent levels with peritoneal membrane transport characteristics. Method Gal-3 levels in serum and dialysate effluent were measured simultaneously in prevalent PD patients in morning visit or during peritoneal equilibration test (PET). Gal-3 levels were correlated with clinical and laboratory parameters. Interlukin (IL) -6 levels were measured in dialysate effluent. Gal-3 mRNA and protein expression were evaluated after exposure of primary endothelial cell culture to several dialysate solutions. Results 37 PD patients were included in the study; mean age was 65.7±13.1 years, mean dialysis vintage was 17.5±13 months. Gal-3 levels in dialysate effluent correlated with peritoneal equilibration test (PET) results (0.663, p=0.005) and effluent IL-6 levels (0.674, p=0.002) but not with serum Gal-3 levels or dialysis vintage. Patients with high PET results had higher effluent Gal-3 levels as compared average low PET results. In multivariate regression analysis effluent IL-6 level was the most dominant predictor of effluent Gal-3 levels. Gal-3 mRNA and protein expression in primary endothelial cell culture were not affected by stimulation with dialysate solutions. Conclusion Our study demonstrated presence of Gal-3 within the dialysate effluent in PD patients. Gal-3 levels correlated with peritoneal membrane transport characteristics and effluent IL-6 levels suggesting a role in the inflammatory process within the peritoneal cavity.


1990 ◽  
Vol 10 (2) ◽  
pp. 119-126 ◽  
Author(s):  
Claudio Ronco ◽  
Mariano Feriani ◽  
Stefano Chiaramonte ◽  
Alessandra Brendolan ◽  
Luisa Bragantini ◽  
...  

Pathophysiology of peritoneal ultrafiltration is analyzed in the present study. Peritoneal equilibration test is the easiest procedure to study in detail the possible causes of failure to control the ultrafiltration rate in patients undergoing peritoneal dialysis. Membrane failure, reduction in peritoneal blood flow, excessive lymphatic reabsorption catheter malposition, and fluid sequestration are the most common causes of ultrafiltration loss. Pharmacologic manipulation of peritoneal membrane, correction of mechanical inconvenients, reduction in peritonitis rate and in the level of immunostimulation of the mesotelial macrophages, together with a careful policy in terms of glucose concentration in the dialysate and dwell times may contribute not only to treat different forms of ultrafiltration loss but also to prevent their incidence.


1989 ◽  
Vol 9 (1) ◽  
pp. 75-78 ◽  
Author(s):  
Min Sun Park ◽  
Jean Lee ◽  
Moon Sung Lee ◽  
Seung Ho Baick ◽  
Seung Duk Hwang ◽  
...  

In order to evaluate peritoneal membrane function and responsiveness of peritoneal microcirculation to vasoactive agents in long-term continuous ambulatory peritoneal dialysis (CAPD) patients, we studied peritoneal clearances of urea (Curea) and creatinine (Ccr), protein concentrations in drained dialysate (D PC), peritoneal glucose absorption (% GA), and drained dialysate volume ( VD) before and after nitroprusside (NP) addition to dialysis solution in 17 long-term CAPD patients (mean duration of CAPD: 52 months) and the results were compared to those of 18 patients who were just trained for CAPD (mean duration: 0.6 month). There were no differences in the control (without NP) Curea, Ccr, D PC, %GA, and VD between the new and long-term CAPD patients. Curea, Ccr, and D PC increased significantly with NP in both new and long-term patients. Curea and Ccr with NP were not different between the new and long-term patients but D PC with NP was significantly lower in the long-term CAPD patients. The results of this study suggest that peritoneal solute clearances and the responsiveness of peritoneal microcirculation to NP remain unchanged after four years of CAPD, despite recurrent episodes of peritonitis.


2003 ◽  
Vol 23 (2_suppl) ◽  
pp. 26-30 ◽  
Author(s):  
Irini Savidaki ◽  
Dionisios Karavias ◽  
Florentia Sotsiou ◽  
Sotiria Alexandri ◽  
Pantelitsa Kalliakmani ◽  
...  

Background Long-term exposure of peritoneal membrane to bioincompatible dialysis solutions leads to structural changes and loss of ultrafiltration capability. Objective We studied the possible relationship between histologic change and the transport characteristics of peritoneal membrane and adequacy of dialysis in continuous ambulatory peritoneal dialysis (CAPD) patients. Patients and Methods The study included 18 CAPD patients (11 men, 7 women) who underwent a peritoneal biopsy either at initiation of treatment (group A, n = 9) or after a mean of 4 years on CAPD (group B, n = 9). The morphologic changes in the mesothelial cells and the vascular compartment and the thickness of the submesothelial collagenous zone were estimated and compared with observations from 6 patients with normal renal function who underwent biopsy of the parietal peritoneum during abdominal surgery. The relationship of the observed changes in CAPD patients to results from a peritoneal equilibration test (PET) and to adequacy of dialysis [total weekly creatinine clearance (CCr) and Kt/V urea] were also investigated. Results The main histologic changes in both groups of patients were loss of mesothelial cells and decrease in the normal mesothelial surface, thickening of the submesothelial collagenous zone, and presence of vascular hyalinosis. The thickness of the submesothelial collagenous zone in both groups of patients was significantly greater than that found in controls (410 μm and 580 μm vs 50 μm, p < 0.05). Although no significant difference was found between morphologic change in the peritoneal membrane of uremic patients starting on CAPD and those who had been on peritoneal dialysis (PD) for a mean period of 4 years, a trend was observed toward more severe lesions in the latter patients. The PET, CCr, and Kt/V urea were not significantly different in the two groups of patients. Those parameters also showed no significant changes when examined at initiation of CAPD and after a mean of 4 years of PD in the same patients (group B). No significant correlations were observed between the histologic changes and the PET, CCr, or Kt/V in both groups of patients. Conclusions Significant structural changes are observed in the peritoneal membrane of uremic patients, and those changes become worse with CAPD treatment. Structural changes are not followed by functional changes during the first 4 years on CAPD.


2008 ◽  
Vol 28 (3_suppl) ◽  
pp. 107-113
Author(s):  
Talerngsak Kanjanabuch ◽  
Monchai Siribamrungwong ◽  
Rungrote Khunprakant ◽  
Sirigul Kanjanabuch ◽  
Piyathida Jeungsmarn ◽  
...  

⋄ Background Continuous exposure of the peritoneal membrane to dialysis solutions during long-term dialysis results in mesothelial cell loss, peritoneal membrane damage, and thereby, ultrafiltration (UF) failure, a major determinant of mortality in patients on continuous ambulatory peritoneal dialysis (CAPD). Unfortunately, none of tests available today can predict long-term UF decline. Here, we propose a new tool to predict such a change. ⋄ Mesothelial cells from 8-hour overnight effluents (1.36% glucose dialysis solution) were harvested, co-stained with cytokeratin (a mesothelial marker) and TUNEL (an apoptotic marker), and were counted using flow cytometry in 48 patients recently started on CAPD. Adequacy of dialysis, UF, nutrition status, dialysate cancer antigen 125 (CA125), and a peritoneal equilibration test (3.86% glucose peritoneal dialysis solution) were simultaneously assessed and were reevaluated 1 year later. ⋄ Results The numbers of total and apoptotic mesothelial cells were 0.19 ± 0.19 million and 0.08 ± 0.12 million cells per bag, respectively. Both numbers correlated well with the levels of end dialysate–to–initial dialysate (D/D0) glucose, dialysate-to-plasma (D/P) creatinine, and sodium dipping. Notably, the counts of cells of both types in patients with diabetes or with high or high-average transport were significantly greater than the equivalent counts in nondiabetic patients or those with low or low-average transport. A cutoff of 0.06 million total mesothelial cells per bag had sensitivity of 1 and a specificity of 0.75 in predicting a further decline in D/D0 glucose and a sensitivity of 0.86 and a specificity of 0.63 to predict a further decline in UF over a 1-year period. In contrast, dialysate CA125 and other measured parameters had low predictive values. ⋄ Conclusions The greater the loss of exfoliated cells, the worse the expected decline in UF. The ability of a count of mesothelial cells to predict a future decline in UF warrants further investigation in clinical practice.


1993 ◽  
Vol 84 (6) ◽  
pp. 619-626 ◽  
Author(s):  
E. Lamb ◽  
W. R. Cattell ◽  
A. Dawnay

1. Chronic use of hyperosmolar glucose solutions in continuous ambulatory peritoneal dialysis may cause glycation of peritoneal structural proteins which could contribute to membrane dysfunction and ultrafiltration failure. To determine whether glycation can occur in the environment of the dialysate, we have carried out studies using albumin as a model protein. 2. Glycated albumin was measured in the serum and dialysate of 46 patients on continuous ambulatory peritoneal dialysis (31 non-diabetic patients, 15 diabetic patients). Dialysate and serum glycated albumin (ranges 1.0-12.7% and 0.9-10.2%, respectively) were related to each other (r = 0.988, P <0.001), but dialysate glycated albumin was significantly higher than serum glycated albumin (P <0.0001), with the dialysate to serum glycated albumin ratio being greater than unity in 76% of patients (mean ratio 1.14). This implies either preferential transfer of glycated albumin across the peritoneal membrane or intraperitoneal glycation during the dwell period. 3. In vitro, significant glycation occurred in dialysate during a 6 h incubation period (P <0.01) at a rate related to the glucose concentration in the dialysate (rs = 0.63, P <0.05). The glycation rate was not significantly affected (P = 0.05) by factors other than the glucose concentration. 4. Our results demonstrate that protein glycation occurs within the peritoneum during continuous ambulatory peritoneal dialysis. Further studies are required to establish the relationship of glycation of structural proteins in the peritoneal membrane to membrane function.


1999 ◽  
Vol 10 (12) ◽  
pp. 2585-2590
Author(s):  
STANISLAO MORGERA ◽  
SIMONE KUCHINKE ◽  
KLEMENS BUDDE ◽  
ANDREAS LUN ◽  
BERTHOLD HOCHER ◽  
...  

Abstract. In long-term peritoneal dialysis, functional deterioration of the peritoneal membrane is often associated with proliferative processes of the involved tissues leading to peritoneal fibrosis. In continuous ambulatory peritoneal dialysis (CAPD), failure to achieve target values for adequacy of dialysis is commonly corrected by increasing dwell volume; in case of ultrafiltration failure, osmolarity of the dialysate gets increased. In a prospective study, the impact of increasing dwell volume from 1500 ml to 2500 ml per dwell (volume trial) or changing the osmolarity of the dialysate from 1.36 to 3.86% glucose (hyperosmolarity trial) on the peritoneal endothelin-1 (ET-1) release was analyzed. ET-1 is known to exert significant proliferative activities on a variety of cell types leading to an accumulation of extracellular matrix. A highly significant difference in the cumulative peritoneal ET-1 synthesis was found between the low- and high-volume exchange, whereas differences in the hyperosmolarity setting were only moderate. Sixty minutes after initiating dialysis, the cumulative ET-1 synthesis was 2367 ± 1023 fmol for the 1500 ml versus 6062 ± 1419 fmol for the 2500 dwell (P < 0.0001) and 4572 ± 969 fmol versus 6124 ± 1473 fmol for the 1.36 and 3.86% glucose dwell (P < 0.05), respectively. In conclusion, increasing dwell volume leads to a strong activation of the peritoneal paracrine endothelin system. Because ET-1, apart from being a potent vasoactive peptide, contributes to fibrotic remodeling, this study indicates that volume stress-induced ET-1 release might contribute to structural alteration of the peritoneal membrane in long-term peritoneal dialysis.


2006 ◽  
Vol 26 (2) ◽  
pp. 136-143 ◽  
Author(s):  
Hidetomo Nakamoto ◽  
Yoshindo Kawaguchi ◽  
Hiromichi Suzuki

Technique failure resulting in transfer to hemodialysis (HD) remains one of the most important challenges in long-term peritoneal dialysis (PD). In general, the proportion of patients transferring from PD to HD is much greater than the proportion transferring from HD to PD. However, technique failure rates differ considerably between and within countries. The question arises as to how technique failure rates in Japan compare with those in other countries. To address this issue, we reviewed the literature and our experience of 139 incident continuous ambulatory peritoneal dialysis (CAPD) patients from January 1995 to December 1999. Based on our review, we estimate that the 5-year technique survival rate in Japanese CAPD patients is approximately 70%, and that technique failure rate is around 7% per year. This rate is significantly lower than that in many other countries. The most common reasons for technique failure in Japan are peritoneal membrane failure, ultrafiltration loss, and inadequate dialysis. Another factor contributing to the low technique failure rate in Japan is an extremely low peritonitis rate. This may be related to good sanitation and excellent PD training programs. Peritoneal membrane failure continues to be the major challenge for long-term technique survival on PD in Japan.


Sign in / Sign up

Export Citation Format

Share Document