scholarly journals Fungicidal effect of lemongrass essential oil on Candida albicans biofilm pre-established on maxillofacial silicone specimens

Author(s):  
Suwan Choonharuangdej ◽  
Shamsiahwati Mat-Rani ◽  
Natdhanai Chotprasert ◽  
Natchalee Srimaneekarn
2020 ◽  
Vol 21 (10) ◽  
pp. 927-938 ◽  
Author(s):  
Roktim Gogoi ◽  
Rikraj Loying ◽  
Neelav Sarma ◽  
Twahira Begum ◽  
Sudin K. Pandey ◽  
...  

Background: The essential oil of methyl eugenol rich Cymbopogon khasianus Hack. was evaluated and its bioactivities were compared with pure methyl eugenol. So far, methyl eugenol rich essential oil of lemongrass was not studied for any biological activities; hence, the present study was conducted. Objective: This study examined the chemical composition of essential oil of methyl eugenol rich Cymbopogon khasianus Hack., and evaluated its antioxidant, anti-inflammatory, antimicrobial, and herbicidal properties and genotoxicity, which were compared with pure compound, methyl eugenol. Material and Methods: Methyl eugenol rich variety of Cymbopogon khasianus Hack., with registration no. INGR18037 (c.v. Jor Lab L-9) was collected from experimental farm CSIR-NEIST, Jorhat, Assam (26.7378°N, 94.1570°E). The essential oil wasobtained by hydro-distillation using a Clevenger apparatus. The chemical composition of the essential oil was evaluated using GC/MS analysis and its antioxidant (DPPH assay, reducing power assay), anti-inflammatory (Egg albumin denaturation assay), and antimicrobial (Disc diffusion assay, MIC) properties, seed germination effect and genotoxicity (Allium cepa assay) were studied and compared with pure Methyl Eugenol compound (ME). Results: Major components detected in the Essential Oil (EO) through Gas chromatography/mass spectroscopy analysis were methyl eugenol (73.17%) and β-myrcene (8.58%). A total of 35components were detected with a total identified area percentage of 98.34%. DPPH assay revealed considerable antioxidant activity of methyl eugenol rich lemongrass essential oil (IC50= 2.263 μg/mL), which is lower than standard ascorbic acid (IC50 2.58 μg/mL), and higher than standard Methyl Eugenol (ME) (IC50 2.253 μg/mL). Methyl eugenol rich lemongrass EO showed IC50 38.00 μg/mL, ME 36.44 μg/mL, and sodium diclofenac 22.76 μg/mL, in in-vitro anti-inflammatory test. Moderate antimicrobial activity towards the 8 tested microbes was shown by methyl eugenol rich lemongrass essential oil whose effectiveness against the microbes was less as compared to pure ME standard. Seed germination assay further revealed the herbicidal properties of methyl eugenol rich essential oil. Moreover, Allium cepa assay revealed moderate genotoxicity of the essential oil. Conclusion: This paper compared the antioxidant, anti-inflammatory, antimicrobial, genotoxicity and herbicidal activities of methyl eugenol rich lemongrass with pure methyl eugenol. This methyl eugenol rich lemongrass variety can be used as an alternative of methyl eugenol pure compound. Hence, the essential oil of this variety has the potential of developing cost-effective, easily available antioxidative/ antimicrobial drugs but its use should be under the safety range of methyl eugenol and needs further clinical trials.


Author(s):  
K.V.N Geromini ◽  
F.B Roratto ◽  
F.G Ferreira ◽  
J Camilotti ◽  
T.M.A Vidigal ◽  
...  

Author(s):  
Gabriel Ribeiro Carvalho ◽  
Amanda Maria Teixeira Lago ◽  
Maria Cecília Evangelista Vasconcelos Schiassi ◽  
Priscila de Castro e Silva ◽  
Soraia Vilela Borges ◽  
...  

Abstract The objective of this work was to evaluate the partial replacement of gum arabic by modified starches on the spray-drying microencapsulation of lemongrass (Cymbopogon flexuosus) essential oil. The ultrasound-assisted emulsions were prepared with 30% (w/w) of wall material, 7.5% (w/w) of oil load, and 1:1 (w/w) replacement ratio for all treatments. After 16 hours, the incompatibility observed between gum arabic and octenyl succinic anhydride (OSA) starch did not affect the obtained microparticles, since the treatment with OSA starch, partially replacing gum arabic, showed the best results for the process yield and for the oil charge retention after spray-drying process, and the treatment showed Newtonian viscosity close to that of the treatment prepared with gum arabic. Maltodextrin dextrose equivalent 10 (10DE) shows an oil load similar to that of the treatment with gum arabic, while the presence of maize maltodextrin DE20 reduces the content of encapsulated oil and the efficiency of the drying process due to the adherence of particles to the chamber. Therefore, the partial substitution of gum arabic is an alternative for the formation of emulsions, for the spray-drying microencapsulation of lemongrass essential oil.


2021 ◽  
Vol 12 (1) ◽  
pp. 636-642
Author(s):  
Lakshmi M ◽  
Nandagopal S

To evaluate the leaf volatile constituents of essential oil of Coleus zeylanicus and evaluate their anti-oxidant and anti-fungal activity. The Chemical composition of Coleus zeylanicus essential oil was determined using GC-MS and FT-IR analytical techniques. The antioxidant activity was evaluated using DPPH scavenging assay. The anti-fungal effect was tested against two potential pathogenic fungal strains - Candida albicans and Malassezia furfur using agar well diffusion method. The essential oil was profiled by the presence of sesquiterpene hydrocarbons 90.67% of their total composition followed by oxygenated monoterpenes and monoterpene hydrocarbons as 5.3% and 2.1% respectively. The GC-MS results showed 14 compounds from Coleus zeylanicus leaf EO representing 98.07% of the total oil composition. The major component was identified as a-Gurjunene (35.94%), a-bisabolol (10.82%) and G-selinene (4.26%). EO showed remarkable antioxidant activity values of IC50 = 59.78± 3.21µg/ml by DPPH scavenging assay. The essential oil showed interesting anti-fungal effects against two pathogenic fungal strains. The most sensible strains to Coleus zeylanicus EO was Malassezia furfur (32.00±0.50mm) compared to that of Candida albicans (15.00±1.25mm). Hence, Coleus zeylanicus EO has potential application against fungal infection and oxidative stress-related diseases. However, further investigations are necessary to isolate and investigate the action mechanism of these bioactive compounds.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Tamirat Bekele Beressa ◽  
Serawit Deyno ◽  
Paul E. Alele

Background. Echinops kebericho is an endemic medicinal plant in Ethiopia widely used in the treatment of infectious and noninfectious diseases. Essential oils are known for their antibacterial, antifungal, antiviral, insecticidal, and antioxidant properties. This study evaluated the antifungal activity of essential oil from E. kebericho against four common pathogenic fungi and two standard strains. Methods. The essential oil was obtained by hydrodistillation. The antifungal screening was done by agar well diffusion method. Minimal inhibitory concentrations (MICs) were determined by broth microdilution. Minimal fungicidal concentrations (MFCs) were determined by subculturing fungal strains with no visible growth onto a Sabouraud dextrose agar (SDA) plate. Results. Candida albicans and Cryptococcus neoformans were highly sensitive while Aspergillus flavus did not show sensitivity up to 1 mg/ml of essential oil; MICs ranged from 0.083 mg/ml to 0.208 mg/ml. Concentration and fungal species showed significant dose-dependent associations ( p < 0.0001 ) with antifungal activity. The MICs of essential oil were comparable to those of the standard drug (fluconazole) against C. glabrata and C. krusei. The lowest MFC of the essential oil was observed against Candida parapsilosis (0.145 mg/ml) while the highest MFC was against Candida krusei (0.667 mg/ml). Conclusion. Echinops kebericho essential oil showed noteworthy antifungal activity against Cryptococcus neoformans, Candida albicans, and Candida glabrata and could be a potential candidate for further antifungal drug development.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 211 ◽  
Author(s):  
Paco Noriega ◽  
José Ballesteros ◽  
Alejandra De la Cruz ◽  
Tatiana Veloz

This study evaluates the antimicrobial and antifungal potential of the essential oil extracted from a species located in the Andes of Ecuador, Piper barbatum Kunth, known as “cordoncillo” or “allupa”, used by the Quichua people as an antibacterial plant for washing female genitalia in cases of infection. The most abundant molecules in the essential oil were: α- phellandrene (43.16%), limonene (7.04%); some oxygenated sesquiterpenes such as: trans-sesquisabinene hydrate (8.23%), elemol (7.21%) and others. The evaluation of antimicrobial activity showed activity in all the strains analyzed; however, those in which MIC values are considered to be very strong (less than 500 µg/mL) are: Staphylococcus aureus 264 µg/mL, Streptococcus mutans 132 µg/mL, Candida albicans 132 µg/mL and Candida tropicalis 264 µg/mL. Antimicrobial bioautography defines which molecules are responsible for the activity; thus, it was possible to establish the chromatographic regions of = 0.02 and Rf = 0.04, as those with active molecules. It was established that 4 hydroxylated sesquiterpene molecules are involved: elemol (7.21%), trans-sesquisabinene hydrate (8.23%), β–eudesmol (3.49%) and 10-epi-γ-eudesmol (1.07%); the last two being the most active. The aim of this manuscript is to analyze both the ancestral knowledge of the Quichua people of Ecuador, and the chemical-biodiversity of the Andean forest ecosystem, in order to provide new raw materials of pharmaceutical interest.


2019 ◽  
Vol 119 ◽  
pp. 191-196 ◽  
Author(s):  
Marcela de Souza Alves ◽  
Ivana Mello Campos ◽  
Diego de Mello Conde de Brito ◽  
Cristiane Martins Cardoso ◽  
Emerson Guedes Pontes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document