scholarly journals Characteristics Of Clay Tile With Rice Husk Ash On Absorption And Flexural Strength

Author(s):  
Kukuh Sungkono
2015 ◽  
Vol 754-755 ◽  
pp. 468-472 ◽  
Author(s):  
Chao Lung Hwang ◽  
Trong Phuoc Huynh

This work investigates the possibility of using fly ash (FA) and Vietnam residual rice husk ash (RHA) in producing unfired building bricks with applying densified mixture design algorithm (DMDA) method. In this research, little amount of cement was added into the mixtures as binder substitution. Unground rice husk ash (URHA), an agricultural by-product, was used as partial fine aggregate replacement (10% and 30%) in the mixtures. The solid bricks of 220×105×60 mm in size were prepared in this study. The hardened properties of the bricks were investigated including compressive strength, flexural strength and water absorption according to corresponding Vietnamese standards. Forming pressure of 35 MPa was applied to form the solid bricks in the mold. The test results show that all brick specimens obtained good mechanical properties, which were well conformed to Vietnamese standard. Compressive strength and flexural strength of the bricks were respectively in range of 13.81–22.06 MPa and 2.25–3.47 MPa. It was definitely proved many potential applications of FA and RHA in the production of unfired building bricks.


2020 ◽  
Vol 13 (3) ◽  
pp. 315-321
Author(s):  
Dhiraj Ahiwale ◽  
Rushikesh Khartode

Now days, the waste rice husk from rice mill, marble powder from tile industry and fly ash from steam power plant are necessary to utilize as partial replacement of cement for concrete production. Large scale production of cement required consumption of raw materials and energy as well as emissions to air which posse’s environmental threat in various areas of country. Apart from the environmental threat, there still exists the problem of shortage in many areas. Therefore, substitute material for concrete needs to be considered. The paper aims to analyze the compressive strength of concrete cubes and flexural strength of concrete beams made from partially replaced cement, sand, and coarse aggregate. This research study adopted in laboratory on 48 total specimens of grade M25 concrete cubes of size 150x150x150mm and concrte beams of size 100x100x500mm were casted. Out of the 48 concrete specimens cast, 6 each were made out 10%, 20%, and 30 % replacement of fly ash, rice husk ash and marble powder to cement in concrete. It was found that the compressive strength and flexural strength of concrete made from the mixture of 20 % partially replaced cement, sand and coarse aggregate was similar than the concrete made from without replaced cement , sand and coarse aggregate.


2008 ◽  
Vol 5 (2) ◽  
pp. 21
Author(s):  
Kartini Kamaruddin ◽  
Hamidah Mohd Saman

It is shown that some of the wastes have properties that would improve the quality of concrete produced. One such waste is agricultural waste rice husk, which constitutes about one-fifth of 600 million tones of rice produced annually in the world. The performance of RHA concrete was found to be varied among those of researchers and most of the studies encompassed for the utilisation of high grade concrete. This paper reported the investigation carried out on the mechanical properties of normal strength concrete of grade 30 N/mm2 with various partial replacement level of ordinary Portland cement (OPC) with Rice Husk Ash (RHA). Two(2) batches of same grade of concrete with and without use of superplasticiser (Sp) were adopted. The mechanical properties evaluated are in terms of compressive strength, flexural strength and tensile splitting strength of RHA concrete with and without superplasticiser (Sp). The results show that the optimum replacement level of RHA was 20 % and with the addition of Sp the replacement of RHA was taken as 40 %. However, the results of the study show that the performance in term of flexural strength and tensile splitting strength does not significantly improved with the replacement of cement with RHA.


2018 ◽  
Vol 13 (4) ◽  
pp. 447-474 ◽  
Author(s):  
Ali Ghorbani ◽  
Maysam Salimzadehshooiili ◽  
Jurgis Medzvieckas ◽  
Romualdas Kliukas

In this paper, stress-strain behaviour of sand-clay mixture stabilised with different cement and rice husk ash percentages, and reinforced with different polypropylene fibre lengths are evaluated. Mixtures are widely used in road construction for soil stabilisation. It is observed that replacing half of the cement percentage (in high cement contents) with rice husk ash will result in a higher unconfined compressive strength. In addition, the presence of 6 mm polypropylene fibres will help to increase the unconfined compressive strength of stabilised samples, while larger fibres cause reverse behaviour. In addition, introducing a new index for assessing the effect of curing days. Curing Improvement Index it is obtained that larger fibres show higher Curing Improvement Index values. Results gained for the effects of curing days, and fibre lengths are further discussed and interpreted using Scanning Electron Microscopy photos. Based on the conducted Unconfined Compressive Strength, Indirect Tensile Strength, and Flexural Strength tests and using evolutionary polynomial regression modelling, some simple relations for prediction of unconfined compressive strength, indirect tensile strength, and flexural strength of cement-rice husk ash stabilised, and fibre reinforced samples are presented. High coefficients of determination of developed equations with experimental data show the accuracy of proposed relationships. Moreover, using a sensitivity analysis based on Cosine Amplitude Method, cement percentage and the length of polypropylene fibres used to reinforce the stabilised samples are respectively reported as the most and the least effective parameters on the unconfined compressive strength of specimens.


2019 ◽  
Vol 1155 ◽  
pp. 41-53 ◽  
Author(s):  
Tuleun Lawrence Zahemen ◽  
Jimoh Alao ◽  
Wasiu John

This paper examines and present the findings of the physical and mechanical properties of concrete containing rice husk ash (RHA), and the blend of rice husk ash with calcium carbide waste (RHA-CCW). Concrete cubes, cylindrical and beam specimens containing different percentages of RHA and RHA-CCW by weight of cement (5, 10, 15 and 20 %) were cast. Compressive strength test was carried out after the specimens were cured in water for 7, 14, 28 and 56 days. Test for tensile and flexural strength was carried out after 28 days curing. Initial and final setting time test was carried out on mortar specimens with the same percentage of RHA and RHA-CCW. Bogues model was used to determine the elemental and compound composition of cement when blended with the RHA and RHA-CCW. From the results obtained, the compressive strength of RHA-CCW concrete increases as cement is partially replaced with RHA-CCW content, with the maximum strength attained at 5 % replacement. RHA concrete attains it maximum strength at 10 % replacement. The maximum compressive strength results obtained for both RHA and RHA-CCW concrete were higher than the strength of plain concrete (0 % replacement) by 1.1 % and 14.7 % respectively. Interestingly, results obtained for the tensile strength also shows a similar pattern of strength development with that of compressive strength. The flexural strength properties of concrete was improved upon when RHA-CCW was used in concrete compared to RHA. The results of setting time test for RHA mortar showed a decrease in setting time, while the reverse was the case for RHA-CCW mortar. In conclusion, provided adequate curing is maintained, the used of RHA-CCW gives a better performance in concrete than RHA. However, they both perform better in concrete than the plain, and can be used as additives in concrete production.


2015 ◽  
Vol 752-753 ◽  
pp. 588-592 ◽  
Author(s):  
Chao Lung Hwang ◽  
Trong Phuoc Huynh

This paper reports on the potential use of fly ash (FA) and residual rice husk ash (RHA) in producing unfired building bricks (UBB) with the application of densified mixture design algorithm (DMDA) method. In this study, little amount of cement (10–15%) was added into the mixtures as binder substitution. Whereas, unground rice husk ash (URHA), an agricultural by-product, was used as partial aggregate replacement (10–20%) in the mixtures. The UBB of 220×105×60 mm in size were prepared and the hardened properties of the bricks were tested including compressive strength, flexural strength, water absorption and bulk density according to Vietnamese standard. Forming pressure of 35 MPa was applied to form the solid bricks in the mold. The test results show that all brick specimens achieved very good mechanical properties. The compressive strength, flexural strength and water absorption of brick specimens were respectively in range of 16.1–22.1 MPa, 2.8–3.5 MPa and 9.5–14.8% and the other properties of the bricks were well conformed to related Vietnamese standard. It was definitely proved many potential applications of FA and RHA in the production of UBB.


2021 ◽  
Author(s):  
Khawaja Adeel Tariq ◽  
Muhammad Sohaib ◽  
Mirza Awais Baig

AbstractThis research work is related to the study of effects on properties of concrete having rice husk ash as cementitious supplementary materials. Total four mixes of concrete were done with varying percentages of rice husk as 6%, 12% and 18%. The tensile, flexural and compressive strengths that contain rice husk ash were determined by testing cubes, cylinders and beams. There was a replacement of 6%, 12% and 18% of rice husk ash in all mixes except the control mix. The concrete's flexural strength with rice husk ash increases at the beginning and at the later age (i.e., 28 days) similar to control mix; however, variation in compressive and splitting tensile strength is negligible. The optimum results are achieved with 6% replacement of cement with rice husk ash. Therefore, it was inferred that rice husk ash could be used as partial replacement of cement in concrete to produce economic concrete.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Naraindas Bheel ◽  
Paul Awoyera ◽  
Irfan Ali Shar ◽  
Samiullah Sohu ◽  
Suhail Ahmed Abbasi ◽  
...  

Over the last decade, there has been a surge in research into possible cement substitute materials in concrete that are environmentally friendly, cost-effective, and socially beneficial. The alternatives include industrial and agricultural wastes, and their potential advantages can be achieved through recycling, repurposing, and renewing processes. With the use of these wastes as additional and replacement materials, significant energy savings and a reduction in cement use can be achieved, which helps to reduce carbon dioxide (CO2) emissions in the environment. Therefore, the use of rice husk ash (RHA) and wheat straw ash (WSA) as ternary cementitious material (TCM) in concrete can help reduce the impact on the environment and minimize the use of Portland cement (PC) in the concrete mixture. This research work is performed on the concrete blended with 0%, 5%, 10%, 15%, and 20% of RHA and WSA as TCM in the mixture. However, the purpose of this experimental work is to investigate the influence of RHA and WSA as TCM on the fresh (slump), physical (water absorption and density), and hardened properties (compressive strength, splitting tensile strength, and flexural strength) and drying shrinkage of concrete. In this regard, a total of 240 concrete samples (cylinders, cubes, and beams) were prepared with 1 : 2 : 4 mix proportions at 0.50 water-cement ratio and cured at 7 and 28 days, respectively. Moreover, the workability of green concrete is getting reduced as the quantity of TCM increases in the mixture. Besides, the compressive strength, splitting tensile strength, and flexural strength are enhanced by 12.65%, 9.40%, and 9.46% at 10% of TCM (5% RHA and 5% WSA) on 28 days consistently. Furthermore, the density and water absorption of concrete are reduced with the increase in the dosages of TCM on 28 days, respectively. In addition, the drying shrinkage is reduced with the increase in the quantity of TCM in concrete.


Sign in / Sign up

Export Citation Format

Share Document