Investigation on the Use of Fly Ash and Residual Rice Husk Ash for Producing Unfired Building Bricks

2015 ◽  
Vol 752-753 ◽  
pp. 588-592 ◽  
Author(s):  
Chao Lung Hwang ◽  
Trong Phuoc Huynh

This paper reports on the potential use of fly ash (FA) and residual rice husk ash (RHA) in producing unfired building bricks (UBB) with the application of densified mixture design algorithm (DMDA) method. In this study, little amount of cement (10–15%) was added into the mixtures as binder substitution. Whereas, unground rice husk ash (URHA), an agricultural by-product, was used as partial aggregate replacement (10–20%) in the mixtures. The UBB of 220×105×60 mm in size were prepared and the hardened properties of the bricks were tested including compressive strength, flexural strength, water absorption and bulk density according to Vietnamese standard. Forming pressure of 35 MPa was applied to form the solid bricks in the mold. The test results show that all brick specimens achieved very good mechanical properties. The compressive strength, flexural strength and water absorption of brick specimens were respectively in range of 16.1–22.1 MPa, 2.8–3.5 MPa and 9.5–14.8% and the other properties of the bricks were well conformed to related Vietnamese standard. It was definitely proved many potential applications of FA and RHA in the production of UBB.

2015 ◽  
Vol 754-755 ◽  
pp. 468-472 ◽  
Author(s):  
Chao Lung Hwang ◽  
Trong Phuoc Huynh

This work investigates the possibility of using fly ash (FA) and Vietnam residual rice husk ash (RHA) in producing unfired building bricks with applying densified mixture design algorithm (DMDA) method. In this research, little amount of cement was added into the mixtures as binder substitution. Unground rice husk ash (URHA), an agricultural by-product, was used as partial fine aggregate replacement (10% and 30%) in the mixtures. The solid bricks of 220×105×60 mm in size were prepared in this study. The hardened properties of the bricks were investigated including compressive strength, flexural strength and water absorption according to corresponding Vietnamese standards. Forming pressure of 35 MPa was applied to form the solid bricks in the mold. The test results show that all brick specimens obtained good mechanical properties, which were well conformed to Vietnamese standard. Compressive strength and flexural strength of the bricks were respectively in range of 13.81–22.06 MPa and 2.25–3.47 MPa. It was definitely proved many potential applications of FA and RHA in the production of unfired building bricks.


2015 ◽  
Vol 804 ◽  
pp. 129-132
Author(s):  
Sumrerng Rukzon ◽  
Prinya Chindaprasirt

This research studies the potential for using waste ash from industrial and agricultural by-products as a pozzolanic material. Classified fly ash (FA) and ground rice husk ash (RA) were the materials used. Water requirement, compressive strength and porosity of cement mortar were investigated. Test results indicated that FA and RA (waste ash) have a high potential to be used as a good pozzolanic material. The water requirement of mortar mix decreases with the increases in fly ash content. For ground rice husk ash (RA), the water requirement of mortar mix increases with the increases in rice husk ash content. In addition, the reduction in porosity was associated with the increase in compressive strength.


2020 ◽  
Vol 13 (3) ◽  
pp. 315-321
Author(s):  
Dhiraj Ahiwale ◽  
Rushikesh Khartode

Now days, the waste rice husk from rice mill, marble powder from tile industry and fly ash from steam power plant are necessary to utilize as partial replacement of cement for concrete production. Large scale production of cement required consumption of raw materials and energy as well as emissions to air which posse’s environmental threat in various areas of country. Apart from the environmental threat, there still exists the problem of shortage in many areas. Therefore, substitute material for concrete needs to be considered. The paper aims to analyze the compressive strength of concrete cubes and flexural strength of concrete beams made from partially replaced cement, sand, and coarse aggregate. This research study adopted in laboratory on 48 total specimens of grade M25 concrete cubes of size 150x150x150mm and concrte beams of size 100x100x500mm were casted. Out of the 48 concrete specimens cast, 6 each were made out 10%, 20%, and 30 % replacement of fly ash, rice husk ash and marble powder to cement in concrete. It was found that the compressive strength and flexural strength of concrete made from the mixture of 20 % partially replaced cement, sand and coarse aggregate was similar than the concrete made from without replaced cement , sand and coarse aggregate.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Naraindas Bheel ◽  
Paul Awoyera ◽  
Irfan Ali Shar ◽  
Samiullah Sohu ◽  
Suhail Ahmed Abbasi ◽  
...  

Over the last decade, there has been a surge in research into possible cement substitute materials in concrete that are environmentally friendly, cost-effective, and socially beneficial. The alternatives include industrial and agricultural wastes, and their potential advantages can be achieved through recycling, repurposing, and renewing processes. With the use of these wastes as additional and replacement materials, significant energy savings and a reduction in cement use can be achieved, which helps to reduce carbon dioxide (CO2) emissions in the environment. Therefore, the use of rice husk ash (RHA) and wheat straw ash (WSA) as ternary cementitious material (TCM) in concrete can help reduce the impact on the environment and minimize the use of Portland cement (PC) in the concrete mixture. This research work is performed on the concrete blended with 0%, 5%, 10%, 15%, and 20% of RHA and WSA as TCM in the mixture. However, the purpose of this experimental work is to investigate the influence of RHA and WSA as TCM on the fresh (slump), physical (water absorption and density), and hardened properties (compressive strength, splitting tensile strength, and flexural strength) and drying shrinkage of concrete. In this regard, a total of 240 concrete samples (cylinders, cubes, and beams) were prepared with 1 : 2 : 4 mix proportions at 0.50 water-cement ratio and cured at 7 and 28 days, respectively. Moreover, the workability of green concrete is getting reduced as the quantity of TCM increases in the mixture. Besides, the compressive strength, splitting tensile strength, and flexural strength are enhanced by 12.65%, 9.40%, and 9.46% at 10% of TCM (5% RHA and 5% WSA) on 28 days consistently. Furthermore, the density and water absorption of concrete are reduced with the increase in the dosages of TCM on 28 days, respectively. In addition, the drying shrinkage is reduced with the increase in the quantity of TCM in concrete.


2021 ◽  
Vol 921 (1) ◽  
pp. 012070
Author(s):  
M Sofyan ◽  
A O Irlan ◽  
A Rokhman ◽  
D D Purnama ◽  
R R R Utami

Abstract Fly Ash, Rice Husk Ash and Linear Low Density Polyethylene (LLDPE) Plastic Waste also contribute to environmental problems. Starting from the problem of CO2 emissions to ecosystem damage due to the accumulation of waste on the earth’s surface. Therefore, this study focuses on the use of Fly Ash, Rice husk ash and LLDPE Powder as a mixture of Alkaline-Activated Mortar. In this study, Fly Ash as a Pozzolanic Material mixed with Alkaline Activator Solution serves as a binder for Mortar. Rice husk ash is used as a substitute material for Fly ash while LLDPE powder functions as a substitute material for sand. The percentage of LLDPE powder used in the mortar mixture is from 0 to 15% of the total weight of the mixture. While the percentage of rice husk ash used in the mixture is 7%, Alkali Activator Solution 27% and Sand ranging from 24.5 to 39.5%. There are six variations of the mortar specimen (AAMP1, AAMP2, AAMP3, AAMP4, AAMP5, AAMP6). Initial setting time testing is done on binder mortar. The mortar compressive strength test was carried out at the age of 7 days after curing the oven at temperatures of 40°C and 60°C. From the test results obtained the highest compressive strength of 11.3 MPa on the AAMP6 test object with a curing temperature of 60°C where the percentage of LLDPE powder on the specimen is 15%. The core of the longest setting time is in the AAMP6 Alkaline-Activated Mortar binder variation, which is 180 minutes. The mortar compressive strength test was carried out at the age of 7 days after curing the oven at temperatures of 40°C and 60°C. From the test results obtained the highest compressive strength of 11.3 MPa on the AAMP6 test object with a curing temperature of 60°C where the percentage of LLDPE powder on the specimen is 15%. The core of the longest setting time is in the AAMP6 Alkaline-Activated Mortar binder variation, which is 180 minutes. The mortar compressive strength test was carried out at the age of 7 days after curing the oven at temperatures of 40°C and 60°C. From the test results obtained the highest compressive strength of 11.3 MPa on the AAMP6 test object with a curing temperature of 60°C where the percentage of LLDPE powder on the specimen is 15%. The core of the longest setting time is in the AAMP6 Alkaline-Activated Mortar binder variation, which is 180 minutes.


2014 ◽  
Vol 608 ◽  
pp. 73-78 ◽  
Author(s):  
Parinya Chakartnarodom ◽  
Pitcharat Ineure

The aim of this work is to study the recycling of glass cullet (waste glass), fly ash, and rice husk ash as the foam glass, a porous construction material having high compressive strength but low density, which are similar to the light weight brick. The foam glasses were prepared by mixing the ground glass cullet/ash mixtures with calcium carbonate (foaming agent) at 1 wt% and sodium silicate solution (binder) at 10 wt%, and then compacted into the rectangle shapes (30 cm × 30 cm × 7cm) which were fired at 650 °C for 30 min, and then for 1 hour at 750, 800, 850, or 900 °C. The sources of glass cullet were art glass factory and glass window industry. The percentages of ash in the ground glass cullet/ash (fly ash or rice husk ash) mixtures were 20, 40, and 60 wt%. The results showed that the foam glass that was made from 80wt% window glass/ 20wt% fly ash and fired at 750 °C had the most suitable properties for being produced commercially because it had good alkaline resistant, and the compressive strength and degree of water absorption better than the light weight brick (G2-type and G4-type autoclaved aerated concrete) while the density was similar to G2-type but lower than G4-type. The compressive strength, density, and degree of water absorption of this foam glass were 59.9 kg/cm2, 421 kg/m3, and 2.1 % respectively. Furthermore, as of September 2013, the total production cost (materials, labor, energy, etc.) of this foam glass is about 16 baht per piece (20 cm × 60 cm × 7.5 cm) which is 12.5 to 43.75% lower than the wholesale price of a light weight brick (18-23 baht per piece for G2-type and G4-type autoclaved aerated concrete).


2016 ◽  
Vol 718 ◽  
pp. 169-176 ◽  
Author(s):  
Korb Srinavin ◽  
Patipat Tunming

Thailand is located in a tropical region, with high intensity of sunlight, high temperature and humidity. Thus, preventing heat transfer into the building is required in order to save electrical energy for air-conditioning systems. This study aims to investigate the physical and thermal properties of construction bricks in order to increase their effectiveness of heat prevention. An attempt is made to increase discontinuous voids in fired clay bricks. Rice Husk Ash (RHA; 0-30 % by weight) and Fly Ash (FA; 0-30 % by weight) were added in brick mixture to increase those voids. Compressive strength and water absorption of bricks were tested. The testing results showed that compressive strength decreased and water absorption increased when RHA and FA were added. The thermal conductivity coefficient of bricks were also investigated. The results confirmed that the higher amount of RHA added, the higher thermal resistance of bricks. Similar results were found for FA. Increasing an amount of FA also increased thermal resistance of bricks. Thermal time-lag behavior was also tested. The results showed that RHA hollow bricks took the longest time in heating and took the shortest time in cooling. These properties are good for heat prevention. These bricks which were developed and tested in this research are conformed to the Thai Industrial Standard. Finally, it can be concluded that because of its thermal behavior, RHA hollow brick is a suitable energy-saving brick for hot and humid climates.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
M. R. Karim ◽  
M. F. M. Zain ◽  
M. Jamil ◽  
F. C. Lai

The increasing demand and consumption of cement have necessitated the use of slag, fly ash, rice husk ash (RHA), and so forth as a supplement of cement in concrete construction. The aim of the study is to develop a zero-cement binder (Z-Cem) using slag, fly ash, and RHA combined with chemical activator. NaOH, Ca(OH)2, and KOH were used in varying weights and molar concentrations. Z-Cem was tested for its consistency, setting time, flow, compressive strength, XRD, SEM, and FTIR. The consistency and setting time of the Z-Cem paste increase with increasing RHA content. The Z-Cem mortar requires more superplasticizer to maintain a constant flow of110±5% compared with OPC. The compressive strength of the Z-Cem mortar is significantly influenced by the amounts, types, and molar concentration of the activators. The Z-Cem mortar achieves a compressive strength of 42–44 MPa at 28 days with 5% NaOH or at 2.5 molar concentrations. The FTIR results reveal that molecules in the Z-Cem mortar have a silica-hydrate (Si-H) bond with sodium or other inorganic metals (i.e., sodium/calcium-silica-hydrate-alumina gel). Therefore, Z-Cem could be developed using the aforementioned materials with the chemical activator.


2019 ◽  
Vol 798 ◽  
pp. 364-369 ◽  
Author(s):  
Khemmakorn Gomonsirisuk ◽  
Parjaree Thavorniti

The aim of this work is to study the feasibility of preparation of fly ash based geopolymer using sodium water glass from agricultural waste as alternative activators. Rice husk ash and bagasse ash were used as raw materials for producing sodium water glass solution. The sodium water glass were produced by mixing rice husk ash and bagasse ash with NaOH in ball mill and boiling. The prepared sodium water glass were analyzed and used in geopolymer preparation process. The geopolymer paste were prepared by adding the obtained water glass and NaOH with fly ash. After cured at ambient temperature for 7 days, mechanical properties were investigated. Bonding and phases of the geopolymer were also characterized. The geopolymer from rice husk ash presented highest compressive strength about 23 MPa while the greatest for bagasse ash was about 16 MPa.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1524 ◽  
Author(s):  
Jing Liu ◽  
Chunyan Xie ◽  
Chao Fu ◽  
Xiuli Wei ◽  
Dake Wu

When properly processed, rice husk ash (RHA) comprises a large amount of SiO2, which exhibits a high pozzolanic activity and acts as a good building filler. In this paper, the effects of rice husk ash content, acid pretreatment, and production regions on the compressive and flexural properties and water absorption of a cement paste were studied. The experimental results showed that the compressive strength of the rice husk ash was the highest with a 10% content level, which was about 16.22% higher than that of the control sample. The rice husk after acid pretreatment displayed a higher strength than that of the sample without the acid treatment, and the rice husk from the Inner Mongolia region indicated a higher strength than that from the Guangdong province. However, the flexural strength of each group was not significantly different from that of the blank control group. The trend observed for the water absorption was similar to that of the compressive strength. The variation in the RHA proportions had the greatest influence on the properties of the paste specimens, followed by the acid pretreatments of the rice husks. The production regions of the rice husks indicated the least influence.


Sign in / Sign up

Export Citation Format

Share Document