scholarly journals The Glacial Geomorphology of the North-West sector of the Laurentide Ice Sheet

2011 ◽  
Vol 7 (1) ◽  
pp. 409-428 ◽  
Author(s):  
Victoria H. Brown ◽  
Chris R. Stokes ◽  
Colm O'Cofaigh

2020 ◽  
Vol 13 (9) ◽  
pp. 4555-4577
Author(s):  
Ilkka S. O. Matero ◽  
Lauren J. Gregoire ◽  
Ruza F. Ivanovic

Abstract. Simulating the demise of the Laurentide Ice Sheet covering Hudson Bay in the Early Holocene (10–7 ka) is important for understanding the role of accelerated changes in ice sheet topography and melt in the 8.2 ka event, a century long cooling of the Northern Hemisphere by several degrees. Freshwater released from the ice sheet through a surface mass balance instability (known as the saddle collapse) has been suggested as a major forcing for the 8.2 ka event, but the temporal evolution of this pulse has not been constrained. Dynamical ice loss and marine interactions could have significantly accelerated the ice sheet demise, but simulating such processes requires computationally expensive models that are difficult to configure and are often impractical for simulating past ice sheets. Here, we developed an ice sheet model setup for studying the Laurentide Ice Sheet's Hudson Bay saddle collapse and the associated meltwater pulse in unprecedented detail using the BISICLES ice sheet model, an efficient marine ice sheet model of the latest generation which is capable of refinement to kilometre-scale resolutions and higher-order ice flow physics. The setup draws on previous efforts to model the deglaciation of the North American Ice Sheet for initialising the ice sheet temperature, recent ice sheet reconstructions for developing the topography of the region and ice sheet, and output from a general circulation model for a representation of the climatic forcing. The modelled deglaciation is in agreement with the reconstructed extent of the ice sheet, and the associated meltwater pulse has realistic timing. Furthermore, the peak magnitude of the modelled meltwater equivalent (0.07–0.13 Sv) is compatible with geological estimates of freshwater discharge through the Hudson Strait. The results demonstrate that while improved representations of the glacial dynamics and marine interactions are key for correctly simulating the pattern of Early Holocene ice sheet retreat, surface mass balance introduces by far the most uncertainty. The new model configuration presented here provides future opportunities to quantify the range of plausible amplitudes and durations of a Hudson Bay ice saddle collapse meltwater pulse and its role in forcing the 8.2 ka event.



Geomorphology ◽  
2014 ◽  
Vol 204 ◽  
pp. 86-113 ◽  
Author(s):  
David J.A. Evans ◽  
Nathaniel J.P. Young ◽  
Colm Ó Cofaigh


2011 ◽  
Vol 31 (3-4) ◽  
pp. 203-206 ◽  
Author(s):  
Harold W. Borns ◽  
Terence J. Hughes

Much of the Laurentide ice sheet in Maine, Atlantic Provinces, and southern Quebec was a "marine ice sheet," that is it was grounded below the prevailing sea level. When proper conditions prevailed, calving bays progressed into the ice sheet along ice streams partitioning it, leaving those portions grounded above sea level as residual ice caps. At least by 12,800 yrs. BP a calving bay had progressed up the St. Lawrence Lowland at least to Ottawa while a similar, but less extensive calving bay developed in Central Maine at approximately the same time. Concurrently, ice draining north into the St. Lawrence and south into the Central Maine calving bays rapidly lowered the surface of the intervening ice sheet until it eventually divided over the NE-SW trending Boundary and Longfellow Mountains and probably over other highland areas as well. A major consequence of these nearly simultaneous processes was the separation of an initial large ice cap over part of Maine, New Brunswick, and Québec which was bounded on the west by the calving bay in Central Maine, to the north by the calving bay in the St. Lawrence Lowland, to the south by the Bay of Fundy, and to the east by the Gulf of St. Lawrence. In coastal Maine, east of the calving bay, the margin of the ice cap receded above the marine limit at least 40 km and subsequently read-vanced terminating at Pineo Ridge moraine approximately 12,700 yrs. BP. These events are the stratigraphie and chronologic equivalent of the Cary-Pt. Huron recession/Pt. Huron readvance of the Great Lakes region.



2007 ◽  
Vol 44 (2) ◽  
pp. 113-136 ◽  
Author(s):  
Victor K. Prest

ABSTRACTThis paper deals with the evolution of ideas concerning the configuration of flow patterns of the great inland ice sheets east of the Cordillera. The interpretations of overall extent of Laurentide ice have changed little in a century (except in the Arctic) but the manner of growth, centres of outflow, and ice-flow patterns, remain somewhat controversial. Present geological data however, clearly favour the notion of multiple centres of ice flow. The first map of the extent of the North American ice cover was published in 1881. A multi-domed concept of the ice sheet was illustrated in an 1894 sketch-map of radial flow from dispersal areas east and west of Hudson Bay. The first large format glacial map of North America was published in 1913. The binary concept of the ice sheet was in vogue until 1943 when a single centre in Hudson Bay was proposed, based on the westward growth of ice from Labrador/Québec. This Hudson dome concept persisted but was not illustrated until 1977. By this time it was evident from dispersal studies that the single dome concept was not viable. Dispersal studies clearly indicate long-continued westward ice flow from Québec into and across southern Hudson Bay, as well as eastward flow from Keewatin into the northern part of the bay. Computer-type modelling of the Laurentide ice sheet(s) further indicates their complex nature. The distribution of two indicator erratics from the Proterozoicage Belcher Island Fold Belt Group help constrain ice flow models. These erratics have been dispersed widely to the west, southwest and south by the Labrador Sector of more than one Laurentide ice sheet. They are abundant across the Paleozoic terrain of the Hudson-James Bay lowland, but decrease in abundance across the adjoining Archean upland. Similar erratics are common in northern Manitoba in the zone of confluence between Labrador and Keewatin Sector ice. Scattered occurences across the Prairies occur within the realm of south-flowing Keewatin ice. As these erratics are not known, and presumably not present, in Keewatin, they indicate redirection and deposition by Keewatin ice following one or more older advances of Labrador ice. The distribution of indicator erratics thus test our concepts of ice sheet growth.



Finisterra ◽  
2012 ◽  
Vol 47 (93) ◽  
Author(s):  
João Bessa Santos

The northern sector of the Kent Interlobate Complex, created by twomajor ice lobes of the Laurentide Ice Sheet during late Wisconsinan times, dominates theglacial landscape of northeast Ohio. The geomorphology of this impressive complex revealsthe presence of large hummocks, kettle lakes and substantial esker chains. The esker chains,usually smaller than 1.3 km long, run parallel to the interlobate complex geographicorientation of northeast-southwest. Gravel pits present on large hummocks display beddedand sorted sedimentary units of gravel, sand and gravel and climbing ripple laminated sandwith folds, which demonstrate that the northern sector of the interlobate complex isprimarily a glaciofluvial feature. Topping these hummocks is a massive clast-supporteddiamicton interpreted to be a debris flow. These geomorphic and sedimentary characteristicsseem to indicate that hummocks present in the interlobate area are in fact kames and that theentire northern sector of the interlobate complex is a product of late Wisconsinan timetransgressive ice stagnation that occurred between two major ice lobes.



1980 ◽  
Vol 13 (1) ◽  
pp. 33-64 ◽  
Author(s):  
W. F. Ruddiman ◽  
A. McIntyre ◽  
V. Niebler-Hunt ◽  
J. T. Durazzi

AbstractThe oxygen isotopic stage 5/4 boundary in deep-sea sediments marks a prominent interval of northern hemisphere ice-sheet growth that lasted about 10,000 yr. During much of this rapid ice growth, the North Atlantic Ocean from at least 40°N to 60°N maintained warm sea-surface temperatures, within 1° to 2°C of today's subpolar ocean. This oceanic warmth provided a local source of moisture for ice-sheet accretion on the adjacent continents. The unusually strong thermal gradient off the east coast of North America (an “interglacial” ocean alongside a “glacial” land mass) also should have directed low-pressure storms from warm southern latitudes north-ward toward the Laurentide Ice Sheet. In addition, minimal calving of ice into the North Atlantic occurred during most of the stage 5/4 transition, indicative of ice retention within the continents. Diminished summer and autumn insolation, a warm subpolar ocean, and minimal calving of ice are conducive to rapid and extensive episodes of northern hemisphere ice-sheet growth.



2009 ◽  
Vol 28 (7-8) ◽  
pp. 721-738 ◽  
Author(s):  
Chris R. Stokes ◽  
Chris D. Clark ◽  
Robert Storrar


1990 ◽  
Vol 14 ◽  
pp. 32-38 ◽  
Author(s):  
Kerry H. Cook

This paper discusses some modeling results that indicate how the atmospheric response to the topography of the continental ice of the Last Glacial Maximum (LGM) may be related to the cold North Atlantic Ocean of that time. Broccoli and Manabe (1987) used a three-dimensional general circulation model (GCM) of the atmosphere coupled with a fixed-depth, static ocean mixed-layer model with ice-age boundary conditions to investigate the individual influences of the CLIMAP ice sheets, snow-free land albedos, and reduced atmospheric CO2 concentrations. They found that the ice sheets are the most influential of the ice-age boundary conditions in modifying the northern hemisphere climate, and that the presence of continental ice sheets alone leads to cooling over the North Atlantic Ocean. One approach for extending these GCM results is to consider the stationary waves generated by the ice sheets. Cook and Held (1988) showed that a linearized, steady-state, primitive equation model can give a reasonable simulation of the GCM’s stationary waves forced by the Laurentide ice sheet. The linear model analysis suggests that the mechanical effect of the changed slope of the surface, and not changes in the diabatic heating (e.g. the high surface albedos) or time-dependent transports that necessarily accompany the ice sheet in the GCM, is largely responsible for the ice sheet’s influence. To obtain the ice-age stationary-wave simulation, the linear model must be linearized about the zonal mean fields from the GCM’s ice-age climate. This is the case because the proximity of the cold polar air to the region of adiabatic heating on the downslope of the Laurentide ice sheet is an important factor in determining the stationary waves. During the ice age, cold air can be transported southward to balance this downslope heating by small perturbations in the meridional wind, consistent with linear theory. Since the meridional temperature gradient is more closely related to the surface albedo (ice extent) than to the ice volume, this suggests a mechanism by which changes in the stationary waves and, therefore, their cooling influence at low levels over the North Atlantic Ocean, can occur on time scales faster than those associated with large changes in continental ice volume.



2009 ◽  
Vol 71 (3) ◽  
pp. 409-425 ◽  
Author(s):  
Helaine W. Markewich ◽  
Ronald J. Litwin ◽  
Milan J. Pavich ◽  
George A. Brook

AbstractInactive parabolic dunes are present in southeastern Maryland, USA, along the east bank of the Potomac River. More elongate and finer-grained eolian deposits and paha-like ridges characterize the Potomac River–Patuxent River upland and the west side of Chesapeake Bay. These ridges are streamlined erosional features, veneered with eolian sediment and interspersed with dunes in the low-relief headwaters of Potomac- and Patuxent-river tributaries. Axis data for the dunes and ridges indicate formation by WNW–NW winds. Optically stimulated luminescence and radiocarbon age data suggest dune formation from ∼ 33–15 ka, agreeing with the 30–13 ka ages Denny, C.S., Owens, J.P., Sirkin, L., Rubin, M., 1979. The Parsonburg Sand in the central Delmarva Peninsula, Maryland and Delaware. U.S. Geol. Surv. Prof. Pap. 1067-B, 16 pp. suggested for eolian deposits east of Chesapeake Bay. Age range and paleowind direction(s) for eolian features in the Bay region approximate those for late Wisconsin loess in the North American midcontinent. Formation of midcontinent loess and Bay-region eolian features was coeval with rapid growth of the Laurentide Ice Sheet and strong cooling episodes (δ18O minima) evident in Greenland ice cores. Age and paleowind-direction coincidence, for eolian features in the midcontinent and Bay region, indicates strong mid-latitude WNW–NW winds for several hundred kilometers south of the Laurentide glacial terminus that were oblique to previously simulated anticyclonic winds for the last glacial maximum.



Sign in / Sign up

Export Citation Format

Share Document