scholarly journals Studies on the Reconstruction of Past Temperature Changes from Stable Isotopes of Water: Records of Millennial-scale Climate Change from Polar Ice Cores

2007 ◽  
Vol 46 (2) ◽  
pp. 147-164 ◽  
Author(s):  
Ryu Uemura
2015 ◽  
Vol 11 (6) ◽  
pp. 5509-5548 ◽  
Author(s):  
O. Eicher ◽  
M. Baumgartner ◽  
A. Schilt ◽  
J. Schmitt ◽  
J. Schwander ◽  
...  

Abstract. Because the total air content (TAC) of polar ice is directly affected by the atmospheric pressure, its record in polar ice cores was considered as a proxy for past ice sheet elevation changes. However the Antarctic ice core TAC record is known to also contain an insolation signature, although the underlying physical mechanisms are still a matter of debate. Here we present a high-resolution TAC record over the whole North Greenland Ice Core Project ice core, covering the last 120 000 years, which independently supports an insolation signature in Greenland. Wavelet analysis reveals a clear precession and obliquity signal similar to previous findings on Antarctic TAC, with different insolation history. In our high-resolution record we also find a decrease of 3–5 % (3–4.2 mL kg−1) in TAC as a response to Dansgaard-Oeschger-Events (DO-events). TAC starts to decrease in parallel to increasing Greenland surface temperature and slightly before CH4 reacts to the warming, but also shows a two-step decline that lasts for several centuries into the warm phase/interstadial. The TAC response is larger than expected considering only local temperature and atmospheric pressure as a driver, pointing to transient firnification response caused by the accumulation-induced increase in the load on the firn at bubble close-off, while temperature changes deeper in the firn are still small.


2017 ◽  
Vol 25 (3) ◽  
pp. 146-147 ◽  
Author(s):  
Mathieu Casado ◽  
AJ Orsi ◽  
A Landais

2019 ◽  
Author(s):  
V. Holly L. Winton ◽  
Alison Ming ◽  
Nicolas Caillon ◽  
Lisa Hauge ◽  
Anna E. Jones ◽  
...  

Abstract. The nitrate (NO3−) isotopic composition δ15N-NO3− of polar ice cores has the potential to provide constraints on past ultraviolet (UV) radiation and thereby total column ozone (TCO), in addition to the oxidising capacity of the ancient atmosphere. However, understanding the transfer of reactive nitrogen at the air-snow interface in Polar Regions is paramount for the interpretation of ice core records of δ15N-NO3− and NO3− mass concentrations. As NO3− undergoes a number of post-depositional processes before it is archived in ice cores, site-specific observations of δ15N-NO3− and air-snow transfer modelling are necessary in order to understand and quantify the complex photochemical processes at play. As part of the Isotopic Constraints on Past Ozone Layer Thickness in Polar Ice (ISOL-ICE) project, we report new measurements of NO3− concentration and δ15N-NO3− in the atmosphere, skin layer (operationally defined as the top 5 mm of the snow pack), and snow pit depth profiles at Kohnen Station, Dronning Maud Land (DML), Antarctica. We compare the results to previous studies and new data, presented here, from Dome C, East Antarctic Plateau. Additionally, we apply the conceptual one-dimensional model of TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow (TRANSITS) to assess the impact of photochemical processes that drive the archival of δ15N-NO3− and NO3− in the snow pack. We find clear evidence of NO3− photolysis at DML, and confirmation of our hypothesis that UV-photolysis is driving NO3− recycling at DML. Firstly, strong denitrification of the snow pack is observed through the δ15N-NO3− signature which evolves from the enriched snow pack (−3 to 100 ‰), to the skin layer (−20 to 3 ‰), to the depleted atmosphere (−50 to −20 ‰) corresponding to mass loss of NO3− from the snow pack. Secondly, constrained by field measurements of snow accumulation rate, light attenuation (e-folding depth) and atmospheric NO3− mass concentrations, the TRANSITS model is able to reproduce our δ15N-NO3− observations in depth profiles. We find that NO3− is recycled three times before it is archived (i.e., below the photic zone) in the snow pack below 15 cm and within 0.75 years. Archived δ15N-NO3− and NO3− concentration values are 50 ‰ and 60 ng g−1 at DML. NO3− photolysis is weaker at DML than at Dome C, due primarily to the higher DML snow accumulation rate; this results in a more depleted δ15N-NO3− signature at DML than at Dome C. Even at a relatively low snow accumulation rate of 6 cm yr−1 (water equivalent; w.e.), the accumulation rate at DML is great enough to preserve the seasonal cycle of NO3− concentration and δ15N-NO3−, in contrast to Dome C where the profiles are smoothed due to stronger photochemistry. TRANSITS sensitivity analysis of δ15N-NO3− at DML highlights that the dominant factors controlling the archived δ15N-NO3− signature are the snow accumulation rate and e-folding depth, with a smaller role from changes in the snowfall timing and TOC. Here we set the framework for the interpretation of a 1000-year ice core record of δ15N-NO3− from DML. Ice core δ15N-NO3− records at DML will be less sensitive to changes in UV than at Dome C, however the higher snow accumulation rate and more accurate dating at DML allows for higher resolution δ15N-NO3− records.


2016 ◽  
Vol 12 (10) ◽  
pp. 1979-1993 ◽  
Author(s):  
Olivier Eicher ◽  
Matthias Baumgartner ◽  
Adrian Schilt ◽  
Jochen Schmitt ◽  
Jakob Schwander ◽  
...  

Abstract. Because the total air content (TAC) of polar ice is directly affected by the atmospheric pressure and temperature, its record in polar ice cores was initially considered as a proxy for past ice sheet elevation changes. However, the Antarctic ice core TAC record is known to also contain an insolation signature, although the underlying physical mechanisms are still a matter of debate. Here we present a high-resolution TAC record over the whole North Greenland Ice Core Project ice core, covering the last 120 000 years, which independently supports an insolation signature in Greenland. Wavelet analysis reveals a clear precession and obliquity signal similar to previous findings on Antarctic TAC, with a different insolation history. In our high-resolution record we also find a decrease of 4–6 % (4–5 mL kg−1) in TAC as a response to Dansgaard–Oeschger events (DO events). TAC starts to decrease in parallel to increasing Greenland surface temperature and slightly before CH4 reacts to the warming but also shows a two-step decline that lasts for several centuries into the warm interstadial. The TAC response is larger than expected considering only changes in air density by local temperature and atmospheric pressure as a driver, pointing to a transient firnification response caused by the accumulation-induced increase in the load on the firn at bubble close-off, while temperature changes deeper in the firn are still small.


2016 ◽  
Author(s):  
T. Bolliet ◽  
P. Brockmann ◽  
V. Masson-Delmotte ◽  
F. Bassinot ◽  
V. Daux ◽  
...  

Abstract. Past climate is an important benchmark to assess the ability of climate models to simulate key processes and feedbacks. Numerous proxy records exist for stable isotopes of water and/or carbon, which are also implemented inside the components of a growing number of Earth system model. Model-data comparisons can help to constrain the uncertainties associated with transfer functions. This motivates the need of producing a comprehensive compilation of different proxy sources. We have put together a global database of proxy records of oxygen (δ18O), hydrogen (δD) and carbon (δ13C) stable isotopes from different archives: ocean and lake sediments, corals, ice cores, speleothems and tree-ring cellulose. Source records were obtained from the georeferenced open access PANGAEA and NOAA libraries, complemented by additional data obtained from a literature survey. About 3000 source records were screened for chronological information and temporal resolution of proxy records. Altogether, this database consists of hundreds of dated δ18O, δ13C and δD records in a standardized simple text format, complemented with a metadata Excel catalog. For coherency with the Paleoclimate Modelling Intercomparison Project (PMIP), we focus on records spanning the past 200 years, the mid-Holocene (MH, 5.5-6.5 ka; calendar kilo years before 1950), and the Last Glacial Maximum (LGM, 19-23 ka), and those spanning the last interglacial period (LIG, 115-130 ka). For the LGM, a quality control flag was implemented to describe age markers and inform on chronological uncertainty. Basic statistics have been applied to characterize anomalies between these different periods. Most changes from the MH to present day, and LIG to MH appear statistically insignificant. Significant global differences are reported from LGM to MH with regional discrepancies in signals from different archives and complex patterns. This compilation effort highlights the need to homogenize the format of datasets and chronological information, and enhance the distribution of published datasets that are currently highly-fragmented and scattered. We also provide an online portal with an intuitive and interactive platform (http://climateproxiesfinder.ipsl.fr/), allowing one to easily select, visualize and download subsets of the homogeneously-formatted records that conform this database, following a choice of search criteria, and to upload new datasets.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
L Kuzma ◽  
A Kurasz ◽  
M Niwinska ◽  
EJ Dabrowski ◽  
M Swieczkowski ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background Acute coronary syndromes (ACS) are the leading cause of death all over the world, in the last years chronobiology of their occurrence has been changing. Purpose The aim of this study was to assess the influence of climate change on hospital admissions due to ACS. Methods Medical records of 10,529 patients hospitalized for ACS in 2008–2017 were examined. Weather conditions data were obtained from the Institute of Meteorology. Results Among the patients, 3537 (33.6%) were hospitalized for STEMI, 3947 (37.5%) for NSTEMI, and 3045 (28.9%) for UA. The highest seasonal mean for ACS was recorded in spring (N = 2782, mean = 2.52, SD = 1.7; OR 1.07; 95% CI 1.0-1.2; P = 0.049) and it was a season with the highest temperature changes day to day (Δ temp.=11.7). On the other hand, every 10ºC change in temperature was associated with an increased admission due to ACS by 13% (RR 1.13; 95% CI 1.04-1.3; P = 0.008). Analysis of weekly changes showed that the highest frequency of ACS occurred on Thursday (N = 1703, mean = 2.7, SD = 1.9; OR 1.16; 95% CI 1.0-1.23; P = 0.004), in STEMI subgroup it was Monday (N = 592, mean = 0.9, SD = 1.6, OR 1.2; 95% CI 1.1-1.4; P = 0.002). Sunday was associated with decreased admissions due to all types of ACS (N = 1098, mean = 1.7, SD = 1.4; OR 0.69; 95% CI 0.6-0.8, P < 0.001). In the second half of the study period (2013-2018) the relative risks of hospital admissions due to ACS were 1.043 (95%CI: 1.009-1.079, P = 0.014, lag 0) and 0.957 (95%CI: 0.925-0.990, P = 0.010, lag 1) for each 10ºC decrease in temperature; 1.049 (95% CI: 1.015-1.084, P = 0.004, lag 0) and 1.045 (95%CI: 1.011-1.080, P = 0.008, lag 1) for each 10 hPa decrease in atmospheric pressure and 1.180 (95% CI: 1.078-1.324, P = 0.007, lag 0) for every 10ºC change in temperature. For the first half of the study the risk was significantly lower. Conclusion We observed a shift in the seasonal peak of ACS occurrence from winter to spring which may be related to temperature fluctuation associated with climate change in this season. The lowest frequency of ACS took place on weekends. Atmospheric changes had a much more pronounced effect on admissions due to ACS in the second half of the analyzed period, which is in line with the dynamics of global climate change.


Author(s):  
Ye Yuan ◽  
Stefan Härer ◽  
Tobias Ottenheym ◽  
Gourav Misra ◽  
Alissa Lüpke ◽  
...  

AbstractPhenology serves as a major indicator of ongoing climate change. Long-term phenological observations are critically important for tracking and communicating these changes. The phenological observation network across Germany is operated by the National Meteorological Service with a major contribution from volunteering activities. However, the number of observers has strongly decreased for the last decades, possibly resulting in increasing uncertainties when extracting reliable phenological information from map interpolation. We studied uncertainties in interpolated maps from decreasing phenological records, by comparing long-term trends based on grid-based interpolated and station-wise observed time series, as well as their correlations with temperature. Interpolated maps in spring were characterized by the largest spatial variabilities across Bavaria, Germany, with respective lowest interpolated uncertainties. Long-term phenological trends for both interpolations and observations exhibited mean advances of −0.2 to −0.3 days year−1 for spring and summer, while late autumn and winter showed a delay of around 0.1 days year−1. Throughout the year, temperature sensitivities were consistently stronger for interpolated time series than observations. Such a better representation of regional phenology by interpolation was equally supported by satellite-derived phenological indices. Nevertheless, simulation of observer numbers indicated that a decline to less than 40% leads to a strong decrease in interpolation accuracy. To better understand the risk of declining phenological observations and to motivate volunteer observers, a Shiny app is proposed to visualize spatial and temporal phenological patterns across Bavaria and their links to climate change–induced temperature changes.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhi-Ping Zhong ◽  
Funing Tian ◽  
Simon Roux ◽  
M. Consuelo Gazitúa ◽  
Natalie E. Solonenko ◽  
...  

Abstract Background Glacier ice archives information, including microbiology, that helps reveal paleoclimate histories and predict future climate change. Though glacier-ice microbes are studied using culture or amplicon approaches, more challenging metagenomic approaches, which provide access to functional, genome-resolved information and viruses, are under-utilized, partly due to low biomass and potential contamination. Results We expand existing clean sampling procedures using controlled artificial ice-core experiments and adapted previously established low-biomass metagenomic approaches to study glacier-ice viruses. Controlled sampling experiments drastically reduced mock contaminants including bacteria, viruses, and free DNA to background levels. Amplicon sequencing from eight depths of two Tibetan Plateau ice cores revealed common glacier-ice lineages including Janthinobacterium, Polaromonas, Herminiimonas, Flavobacterium, Sphingomonas, and Methylobacterium as the dominant genera, while microbial communities were significantly different between two ice cores, associating with different climate conditions during deposition. Separately, ~355- and ~14,400-year-old ice were subject to viral enrichment and low-input quantitative sequencing, yielding genomic sequences for 33 vOTUs. These were virtually all unique to this study, representing 28 novel genera and not a single species shared with 225 environmentally diverse viromes. Further, 42.4% of the vOTUs were identifiable temperate, which is significantly higher than that in gut, soil, and marine viromes, and indicates that temperate phages are possibly favored in glacier-ice environments before being frozen. In silico host predictions linked 18 vOTUs to co-occurring abundant bacteria (Methylobacterium, Sphingomonas, and Janthinobacterium), indicating that these phages infected ice-abundant bacterial groups before being archived. Functional genome annotation revealed four virus-encoded auxiliary metabolic genes, particularly two motility genes suggest viruses potentially facilitate nutrient acquisition for their hosts. Finally, given their possible importance to methane cycling in ice, we focused on Methylobacterium viruses by contextualizing our ice-observed viruses against 123 viromes and prophages extracted from 131 Methylobacterium genomes, revealing that the archived viruses might originate from soil or plants. Conclusions Together, these efforts further microbial and viral sampling procedures for glacier ice and provide a first window into viral communities and functions in ancient glacier environments. Such methods and datasets can potentially enable researchers to contextualize new discoveries and begin to incorporate glacier-ice microbes and their viruses relative to past and present climate change in geographically diverse regions globally.


2017 ◽  
Vol 13 (4) ◽  
pp. 345-358 ◽  
Author(s):  
Marília C. Campos ◽  
Cristiano M. Chiessi ◽  
Ines Voigt ◽  
Alberto R. Piola ◽  
Henning Kuhnert ◽  
...  

Abstract. Abrupt millennial-scale climate change events of the last deglaciation (i.e. Heinrich Stadial 1 and the Younger Dryas) were accompanied by marked increases in atmospheric CO2 (CO2atm) and decreases in its stable carbon isotopic ratios (δ13C), i.e. δ13CO2atm, presumably due to outgassing from the ocean. However, information on the preceding Heinrich Stadials during the last glacial period is scarce. Here we present δ13C records from two species of planktonic foraminifera from the western South Atlantic that reveal major decreases (up to 1 ‰) during Heinrich Stadials 3 and 2. These δ13C decreases are most likely related to millennial-scale periods of weakening of the Atlantic meridional overturning circulation and the consequent increase (decrease) in CO2atm (δ13CO2atm). We hypothesise two mechanisms that could account for the decreases observed in our records, namely strengthening of Southern Ocean deep-water ventilation and weakening of the biological pump. Additionally, we suggest that air–sea gas exchange could have contributed to the observed δ13C decreases. Together with other lines of evidence, our data are consistent with the hypothesis that the CO2 added to the atmosphere during abrupt millennial-scale climate change events of the last glacial period also originated in the ocean and reached the atmosphere by outgassing. The temporal evolution of δ13C during Heinrich Stadials 3 and 2 in our records is characterized by two relative minima separated by a relative maximum. This w structure is also found in North Atlantic and South American records, further suggesting that such a structure is a pervasive feature of Heinrich Stadial 2 and, possibly, also Heinrich Stadial 3.


Sign in / Sign up

Export Citation Format

Share Document