scholarly journals Climatic and insolation control on the high-resolution total air content in the NGRIP ice core

2015 ◽  
Vol 11 (6) ◽  
pp. 5509-5548 ◽  
Author(s):  
O. Eicher ◽  
M. Baumgartner ◽  
A. Schilt ◽  
J. Schmitt ◽  
J. Schwander ◽  
...  

Abstract. Because the total air content (TAC) of polar ice is directly affected by the atmospheric pressure, its record in polar ice cores was considered as a proxy for past ice sheet elevation changes. However the Antarctic ice core TAC record is known to also contain an insolation signature, although the underlying physical mechanisms are still a matter of debate. Here we present a high-resolution TAC record over the whole North Greenland Ice Core Project ice core, covering the last 120 000 years, which independently supports an insolation signature in Greenland. Wavelet analysis reveals a clear precession and obliquity signal similar to previous findings on Antarctic TAC, with different insolation history. In our high-resolution record we also find a decrease of 3–5 % (3–4.2 mL kg−1) in TAC as a response to Dansgaard-Oeschger-Events (DO-events). TAC starts to decrease in parallel to increasing Greenland surface temperature and slightly before CH4 reacts to the warming, but also shows a two-step decline that lasts for several centuries into the warm phase/interstadial. The TAC response is larger than expected considering only local temperature and atmospheric pressure as a driver, pointing to transient firnification response caused by the accumulation-induced increase in the load on the firn at bubble close-off, while temperature changes deeper in the firn are still small.

2016 ◽  
Vol 12 (10) ◽  
pp. 1979-1993 ◽  
Author(s):  
Olivier Eicher ◽  
Matthias Baumgartner ◽  
Adrian Schilt ◽  
Jochen Schmitt ◽  
Jakob Schwander ◽  
...  

Abstract. Because the total air content (TAC) of polar ice is directly affected by the atmospheric pressure and temperature, its record in polar ice cores was initially considered as a proxy for past ice sheet elevation changes. However, the Antarctic ice core TAC record is known to also contain an insolation signature, although the underlying physical mechanisms are still a matter of debate. Here we present a high-resolution TAC record over the whole North Greenland Ice Core Project ice core, covering the last 120 000 years, which independently supports an insolation signature in Greenland. Wavelet analysis reveals a clear precession and obliquity signal similar to previous findings on Antarctic TAC, with a different insolation history. In our high-resolution record we also find a decrease of 4–6 % (4–5 mL kg−1) in TAC as a response to Dansgaard–Oeschger events (DO events). TAC starts to decrease in parallel to increasing Greenland surface temperature and slightly before CH4 reacts to the warming but also shows a two-step decline that lasts for several centuries into the warm interstadial. The TAC response is larger than expected considering only changes in air density by local temperature and atmospheric pressure as a driver, pointing to a transient firnification response caused by the accumulation-induced increase in the load on the firn at bubble close-off, while temperature changes deeper in the firn are still small.


2013 ◽  
Vol 9 (4) ◽  
pp. 1715-1731 ◽  
Author(s):  
L. Bazin ◽  
A. Landais ◽  
B. Lemieux-Dudon ◽  
H. Toyé Mahamadou Kele ◽  
D. Veres ◽  
...  

Abstract. An accurate and coherent chronological framework is essential for the interpretation of climatic and environmental records obtained from deep polar ice cores. Until now, one common ice core age scale had been developed based on an inverse dating method (Datice), combining glaciological modelling with absolute and stratigraphic markers between 4 ice cores covering the last 50 ka (thousands of years before present) (Lemieux-Dudon et al., 2010). In this paper, together with the companion paper of Veres et al. (2013), we present an extension of this work back to 800 ka for the NGRIP, TALDICE, EDML, Vostok and EDC ice cores using an improved version of the Datice tool. The AICC2012 (Antarctic Ice Core Chronology 2012) chronology includes numerous new gas and ice stratigraphic links as well as improved evaluation of background and associated variance scenarios. This paper concentrates on the long timescales between 120–800 ka. In this framework, new measurements of δ18Oatm over Marine Isotope Stage (MIS) 11–12 on EDC and a complete δ18Oatm record of the TALDICE ice cores permit us to derive additional orbital gas age constraints. The coherency of the different orbitally deduced ages (from δ18Oatm, δO2/N2 and air content) has been verified before implementation in AICC2012. The new chronology is now independent of other archives and shows only small differences, most of the time within the original uncertainty range calculated by Datice, when compared with the previous ice core reference age scale EDC3, the Dome F chronology, or using a comparison between speleothems and methane. For instance, the largest deviation between AICC2012 and EDC3 (5.4 ka) is obtained around MIS 12. Despite significant modifications of the chronological constraints around MIS 5, now independent of speleothem records in AICC2012, the date of Termination II is very close to the EDC3 one.


2015 ◽  
Vol 9 (4) ◽  
pp. 1633-1648 ◽  
Author(s):  
J.-L. Tison ◽  
M. de Angelis ◽  
G. Littot ◽  
E. Wolff ◽  
H. Fischer ◽  
...  

Abstract. An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (δD-δ18Oice, δ18Oatm, total air content, CO2, CH4, N2O, dust, high-resolution chemistry, ice texture) of the bottom 60 m of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from central Antarctica. These bottom layers were subdivided into two distinct facies: the lower 12 m showing visible solid inclusions (basal dispersed ice facies) and the upper 48 m, which we will refer to as the "basal clean ice facies". Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies. It is demonstrated that neither large-scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end term from a previous/initial ice sheet configuration) can explain the observed bottom-ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom-ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom-ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate "from within", and not from incorporation processes of debris from the ice sheet's substrate. We further discuss how the proposed mechanism is compatible with the other ice properties described. We conclude that the paleoclimatic signal is only marginally affected in terms of global ice properties at the bottom of EPICA Dome C, but that the timescale was considerably distorted by mechanical stretching of MIS20 due to the increasing influence of the subglacial topography, a process that might have started well above the bottom ice. A clear paleoclimatic signal can therefore not be inferred from the deeper part of the EPICA Dome C ice core. Our work suggests that the existence of a flat monotonic ice–bedrock interface, extending for several times the ice thickness, would be a crucial factor in choosing a future "oldest ice" drilling location in Antarctica.


2012 ◽  
Vol 8 (6) ◽  
pp. 5963-6009 ◽  
Author(s):  
L. Bazin ◽  
A. Landais ◽  
B. Lemieux-Dudon ◽  
H. Toyé Mahamadou Kele ◽  
D. Veres ◽  
...  

Abstract. An accurate and coherent chronological framework is essential for the interpretation of climatic and environmental records obtained from deep polar ice cores. Until now, one common ice core age scale has been developed based on an inverse dating method (Datice) combining glaciological modelling with absolute and stratigraphic markers between 4 ice cores covering the last 50 ka (thousand of years before present) (Lemieux-Dudon et al., 2010). In this paper, together with the companion paper of Veres et al. (2012), we present an extension of this work back to 800 ka for the NGRIP, TALDICE, EDML, Vostok and EDC ice cores using an improved version of the Datice tool. The AICC2012 (Antarctic Ice Core Chronology 2012) chronology includes numerous new gas and ice stratigraphic links as well as improved evaluation of background and associated variance scenarios. This paper concentrates on the long timescales between 120–800 ka. In this frame, new measurements of δ18Oatm over Marine Isotope Stage (MIS) 11–12 on EDC and a complete δ18Oatm record of the TALDICE ice cores permit us to derive new orbital gas age constraints. The coherency of the different orbitally deduced ages (from δ18Oatm, δO2/N2 and air content) has been verified before implementation in AICC2012. The new chronology shows only small differences, well within the original uncertainty range, when compared with the previous ice core reference age scale EDC3. For instance, the duration of the last four interglacial periods is not affected by more than 5%. The largest deviation between AICC2012 and EDC3 (4.4 ka) is obtained around MIS 12. Despite significant modifications of the chronological constraints around MIS 5, now independent of speleothem records in AICC2012, the date of Termination II is very close to the EDC3 one.


2015 ◽  
Vol 9 (1) ◽  
pp. 567-608
Author(s):  
J.-L. Tison ◽  
M. de Angelis ◽  
G. Littot ◽  
E. Wolff ◽  
H. Fischer ◽  
...  

Abstract. An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (δD-δ18Oice, δ18Oatm, total air content, CO2, CH4, N2O, dust, high resolution chemistry, ice texture) of the bottom 60 m of the EPICA Dome C ice core from central Antarctica. These bottom layers have been subdivided in two sections: the lower 12 m showing visible solid inclusions (basal ice) and the 48 m above which we refer to as "deep ice". Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies. It is demonstrated that neither large scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end-term from a previous/initial ice sheet configuration) can explain the observed bottom ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate "from within", and not from incorporation processes of allochtone material at the ice–bedrock interface. We also discuss how the proposed mechanism is compatible with the other variables described. We conclude that the paleoclimatic signal is only marginally affected in terms of global ice properties at the bottom of EPICA Dome C, but that the time scale has been considerably distorted by mechanical stretching of MIS20 due to the increasing influence of the subglacial topography, a process that might have started well above the bottom ice.


2014 ◽  
Vol 55 (68) ◽  
pp. 72-82 ◽  
Author(s):  
Peter D. Neff

AbstractMaintaining ice-core quality through the brittle ice zone (BIZ) remains challenging for polar ice-core studies. At depth, increasing ice overburden pressurizes trapped air bubbles, causing fracture of cores upon exposure to atmospheric pressure. Fractured ice cores degrade analyses, reducing resolution and causing contamination. BIZ encounters at 18 sites across the Greenland, West and East Antarctic ice sheets are documented. The BIZ begins at a mean depth of 545 ± 162 m (1 standard deviation), extending to depths where ductile clathrate ice is reached: an average of 1132 ± 178 m depth. Ice ages in this zone vary with snow accumulation rate and ice thickness, beginning as young as 2 ka BP at Dye-3, Greenland, affecting ice >160 ka BP in age at Taylor Dome, Antarctica, and compromising up to 90% of retrieved samples at intermediate-depth sites. Effects of pressure and temperature on the BIZ are explored using modeled firn-column overburden pressure and borehole temperatures, revealing complex associations between firn densification and BIZ depth, and qualitatively supporting expected thinning of the BIZ at low ice temperatures due to shallower clathrate stability. Mitigating techniques for drilling, transport, sampling and analysis of brittle ice cores are also discussed.


2012 ◽  
Vol 8 (3) ◽  
pp. 1109-1125 ◽  
Author(s):  
R. Uemura ◽  
V. Masson-Delmotte ◽  
J. Jouzel ◽  
A. Landais ◽  
H. Motoyama ◽  
...  

Abstract. A single isotope ratio (δD or δ18O) of water is widely used as an air-temperature proxy in Antarctic ice core records. These isotope ratios, however, do not solely depend on air-temperature but also on the extent of distillation of heavy isotopes out of atmospheric water vapor from an oceanic moisture source to a precipitation site. The temperature changes at the oceanic moisture source (Δ Tsource) and at the precipitation site (Δ Tsite) can be retrieved by using deuterium-excess (d) data. A new d record from Dome Fuji, Antarctica spanning the past 360 000 yr is presented and compared with records from Vostok and EPICA Dome C ice cores. In previous studies, to retrieve Δ Tsource and Δ Tsite information, different linear regression equations were proposed using theoretical isotope distillation models. A major source of uncertainty lies in the coefficient of regression, βsite which is related to the sensitivity of d to Δ Tsite. We show that different ranges of temperature and selections of isotopic model outputs may increase the value of βsite by more than a factor of two. To explore the impacts of this coefficient on reconstructed temperatures, we apply for the first time the exact same methodology to the isotope records from the three Antarctica ice cores. We show that uncertainties in the βsite coefficient strongly affect (i) the glacial–interglacial magnitude of Δ Tsource; (ii) the imprint of obliquity in Δ Tsource and in the site-source temperature gradient. By contrast, we highlight the robustness of Δ Tsite reconstruction using water isotopes records.


2021 ◽  
Vol 17 (1) ◽  
pp. 317-330
Author(s):  
Andreas Plach ◽  
Bo M. Vinther ◽  
Kerim H. Nisancioglu ◽  
Sindhu Vudayagiri ◽  
Thomas Blunier

Abstract. This study presents simulations of Greenland surface melt for the Eemian interglacial period (∼130 000 to 115 000 years ago) derived from regional climate simulations with a coupled surface energy balance model. Surface melt is of high relevance due to its potential effect on ice core observations, e.g., lowering the preserved total air content (TAC) used to infer past surface elevation. An investigation of surface melt is particularly interesting for warm periods with high surface melt, such as the Eemian interglacial period. Furthermore, Eemian ice is the deepest and most compressed ice preserved on Greenland, resulting in our inability to identify melt layers visually. Therefore, simulating Eemian melt rates and associated melt layers is beneficial to improve the reconstruction of past surface elevation. Estimated TAC, based on simulated melt during the Eemian, could explain the lower TAC observations. The simulations show Eemian surface melt at all deep Greenland ice core locations and an average of up to ∼30 melt days per year at Dye-3, corresponding to more than 600 mm water equivalent (w.e.) of annual melt. For higher ice sheet locations, between 60 and 150 mmw.e.yr-1 on average are simulated. At the summit of Greenland, this yields a refreezing ratio of more than 25 % of the annual accumulation. As a consequence, high melt rates during warm periods should be considered when interpreting Greenland TAC fluctuations as surface elevation changes. In addition to estimating the influence of melt on past TAC in ice cores, the simulated surface melt could potentially be used to identify coring locations where Greenland ice is best preserved.


2021 ◽  
Author(s):  
Imogen Gabriel ◽  
Gill Plunkett ◽  
Peter Abbott ◽  
Bergrún Óladóttir ◽  
Joseph McConnell ◽  
...  

<p>Volcanic eruptions are considered as one of the primary natural drivers for changes in the global climate system and understanding the impact of past eruptions on the climate is integral to adopt appropriate responses towards future volcanic eruptions.</p><p>The Greenland ice core records are dominated by Icelandic eruptions, with several volcanic systems (Katla, Hekla, Bárðarbunga-Veiðivötn and Grimsvötn) being highly active throughout the Holocene. A notable period of increased Icelandic volcanic activity occurred between 500-1250 AD and coincided with climatic changes in the North Atlantic region which may have facilitated the Viking settlement of Greenland and Iceland. However, a number of these volcanic events are poorly constrained (duration and magnitude). Consequently, the Greenland ice cores offer the opportunity to reliably reconstruct past Icelandic volcanism (duration, magnitude and frequency) due to their high-resolution, the proximity of Iceland to Greenland and subsequent increased likelihood of volcanic fallout deposits (tephra particles and sulphur aerosols) being preserved. However, both the high frequency of eruptions between 500-1250 AD and the geochemical similarity of Iceland’s volcanic centres present challenges in making the required robust geochemical correlations between the source volcano and the ice core records and ultimately reliably assessing the climatic-societal impacts of these eruptions.</p><p>To address this, we use two Greenland ice core records (TUNU2013 and B19) and undertake geochemical analysis on tephra from the volcanic events in the selected time window which have been detected and sampled using novel techniques (insoluble particle peaks and sulphur acidity peaks). Further geochemical analysis of proximal material enables robust correlations to be made between the events in the ice core records and their volcanic centres. The high-resolution of these polar archives provides a precise age for the event and when utilised alongside other proxies (i.e. sulphur aerosols), both the duration and magnitude of these eruptions can be constrained, and the climatic-societal impacts of these eruptions reliably assessed.</p>


2021 ◽  
Author(s):  
Thomas Münch ◽  
Maria Hörhold ◽  
Johannes Freitag ◽  
Melanie Behrens ◽  
Thomas Laepple

<p>Ice cores constitute a major palaeoclimate archive by recording, among many others, the atmospheric variations of stable oxygen and hydrogen isotopic composition of water and of soluble ionic impurities. While impurities are used as proxies for, e.g., variations in sea ice, marine biological activity and volcanism, stable isotope records are the main source of information for the reconstruction of polar temperature changes.</p><p>However, such reconstruction efforts are complicated by the fact that temperature is by far not the only driver of isotopic composition changes. A single isotopic ice-core record will comprise variations caused by a multitude of processes, from variable atmospheric circulation and moisture pathways to the intermittency of precipitation and finally to the mixing and re-location of surface snow by wind drift (stratigraphic noise). Under the assumption that specific trace components are originally deposited with the precipitated snow and its isotopic composition, the retrieved impurity records should display a similar spatial and seasonal to interannual variability as the isotope records, caused by local stratigraphic noise as well as the time-variable and intermittent precipitation patterns, respectively.</p><p>In this contribution, we investigate the possible relationship between isotope and impurity data at the East Antarctic low-accumulation site EDML. We sampled and analysed isotopic composition and major impurity species on a four metre deep and 50 metre long trench. This enables us (1) to study the spatial (horizontal times vertical) relationship in the data, and (2) to analyse and compare the seasonal and interannual variability after removing the strong contribution of local stratigraphic noise. By this, the study improves our understanding of the depositional mechanisms that play an important role for the formation of ice-core records, and it offers to investigate the potential of using impurities to correct isotopic variability in order to improve temperature reconstructions.</p>


Sign in / Sign up

Export Citation Format

Share Document