scholarly journals Degradation of the Textile Dye Reactive Black 5 by Basidiomycetes

Author(s):  
Leonardo Pellizzari Wielewski ◽  
Tatiana Zuccolotto ◽  
Marlene Soares ◽  
Liziê Daniela Tentler Prola ◽  
Marcus Vinicius de Liz

 Reactive Black 5 (RB5) is one of the synthetic reactive dyes most used in the textile industry, due to its solubility in water and reactive groups which form covalent bonds within the fiber. In the process of dyeing fabrics, however, it is estimated that 12-14% of dyes are released into the effluent.  This work evaluated the biodegradation of RB5 dye, adsorbed in polyurethane foam, by basidiomycetes (Phanerochaete chrysosporium ATCC 24725, Pleurotus ostreatus and Pleurotus floridae). Results were evaluated considering the partial- or total medium discoloration, the adsorption capacity of the dye in the polyurethane foam (PUF) and the respirometric measurements. The results showed that Phanerochaete chrysosporium was able to partially degrade 50 mg L-1 of RB5 in pH 6.0, when cultivated in Petri dishes. When this microorganism was cultivated in PUF cubes saturated with RB5 solution (50 mg L-1, pH 6.0), CO2 production reached an accumulated value of 2.16 mg on the fifteenth day, revealing the growth of the microorganism and consequently the contaminant degradation, which was used as the source of nutrients.

Author(s):  
Amanda Basilio ◽  
Lucas Dohler ◽  
Matheus Servin ◽  
Carlos Gouvea ◽  
Ronny Ribeiro ◽  
...  

Due to the usual resistance of textile dyes to conventional biological treatment processes, the color removal of dyeing wastewaters remains a challenge for the textile industry. This work evaluates the capacity of advanced oxidation processes based on thermally-activated persulfate concerning textile dyes’ degradation in aqueous solution and the reuse of dyeing baths. Preliminary studies were carried out in a bench-scale jacketed reactor, using Reactive Black 5 (40 mg L-1) as a model dye. Almost complete dye degradation was observed in 60 min in this stage, using 300 mg L-1 of persulfate and activation temperatures of 80 ºC, basically due to the action of radical sulfate. The use of high concentrations of persulfate (1000 mg L-1) allowed efficient color removal of dyeing baths containing remazol dyes in processes activated at 80 and 90 ºC. However, the wastewaters treated under these conditions did not lead to high dyeing efficiency in reuse studies, probably due to residual persulfate presence. In contrast, low concentrations of persulfate (250 mg L-1) lead to partial color removal and a better dyeing quality. The results suggest a good potential for treating high-temperature dyeing baths, saving water and auxiliary agents used in textile dyeing processes.


2007 ◽  
Vol 55 (10) ◽  
pp. 145-153 ◽  
Author(s):  
T. Ölmez ◽  
I. Kabdaşlı ◽  
O. Tünay

In this study, the effects of the phosphonic acid based sequestering agent EDTMPA used in the textile dye baths on colour and organic matter removal by ozone oxidation was experimentally investigated. Procion Navy HEXL dyestuff that has been commonly used for the reactive dyeing of cellulose fibers was selected as the model component. The organic matter oxidation by ozone was determined to obey the pseudo-first order kinetics as they are treated singly or in combination. COD removal rates obtained from pseudo-first order reaction kinetics showed that oxidation of Navy HEXL alone (0.0947 L/min) was faster than that of EDTMPA (0.0171 L/min) and EDTMPA with dye (0.0155 L/min) at pH 3.0. It was also found that reaction rates of single EDTMPA removal and EDTMPA and dye mixture removal increased as the reaction pH was increased from 3.0 to 10.5.


2019 ◽  
Vol 7 (10) ◽  
pp. 384 ◽  
Author(s):  
Valentina Riva ◽  
Francesca Mapelli ◽  
Evdokia Syranidou ◽  
Elena Crotti ◽  
Redouane Choukrallah ◽  
...  

The microbiome associated with plants used in phytodepuration systems can boost plant growth and services, especially in ecosystems dealing with recalcitrant compounds, hardly removed via traditional wastewater (WW) treatments, such as azo-dyes used in textile industry. In this context, we aimed to study the cultivable microbiome selected by Phragmites australis plants in a Constructed Wetland (CW) in Morocco, in order to obtain candidate inoculants for the phytodepuration of azo-dye contaminated WW. A collection of 152 rhizospheric and endophytic bacteria was established. The strains were phylogenetically identified and characterized for traits of interest in the phytodepuration context. All strains showed Plant Growth Promotion potential in vitro and 67% of them significantly improved the growth of a model plant in vivo compared to the non bacterized control plants. Moreover, most of the isolates were able to grow in presence of several model micropollutants typically found in WW, indicating their potential use in phytodepuration of a wide spectrum of effluents. The six most promising strains of the collection were tested in CW microcosms alone or as consortium: the consortium and two single inocula demonstrated to significantly increase the removal of the model azo-dye Reactive Black 5 compared to the non bacterized controls.


2019 ◽  
Vol 17 (3) ◽  
pp. 1211-1224 ◽  
Author(s):  
T. Jóźwiak ◽  
U. Filipkowska ◽  
S. Brym ◽  
L. Kopeć

Abstract In this study, we analyzed the effectiveness of sorption of dyes popular in the textile industry (Reactive Black 5, Reactive Yellow 84, Acid Yellow 23, and Acid Red 18) on aminated and non-aminated seed hulls of common sunflower (Helianthus annuus L.). The scope of the study included: determination of the effect of pH on dye sorption effectiveness, sorption kinetics analyses (sorption equilibrium time, pseudo-first-order/pseudo-second-order model, intramolecular diffusion model), and determination of the maximum sorption capacity against dyes (Langmuir/Freundlich isotherm). The sorbent was subjected to the FTIR analysis. The sorption capacity of the aminated sunflower seed hulls against reactive dyes RB5 and RY84 accounted for 51.02 mg/g and 63.27 mg/g, respectively, and was higher by 1665% (17.6 times higher) and 1425% (15.3 times higher) compared to that of non-modified hulls. In the case of acidic dyes, Acid Yellow 23 and Acid Red 18, the sorption capacity of the aminated sunflower seed hulls reached 44.78 mg/g and 42.19 mg/g, respectively, and was higher by 1881% (19.8 times higher) and 2284% (23.8 times higher), respectively, compared to the non-modified hulls.


2020 ◽  
Vol 6 (2) ◽  
pp. 53
Author(s):  
Mardonio E. Palomino Agurto ◽  
Sarath M. Vega Gutierrez ◽  
R. C. Van Court ◽  
Hsiou-Lien Chen ◽  
Seri C. Robinson

Identification of effective natural dyes with the potential for low environmental impact has been a recent focus of the textile industry. Pigments derived from spalting fungi have previously shown promise as textile dyes; however, their use has required numerous organic solvents with human health implications. This research explored the possibility of using linseed oil as a carrier for the pigment from Scytalidium cuboideum as a textile dye. Colored linseed oil effectively dyed a range of fabrics, with natural fibers showing better coloration. Scanning electron microscopy (SEM) revealed a pigment film over the fabric surface. While mechanical testing showed no strength loss in treated fabric, colorfastness tests showed significant changes in color in response to laundering and bleach exposure with variable effects across fabric varieties. SEM investigation confirmed differences in pigmented oil layer loss and showed variation in pigment crystal formation between fabric varieties. Heating of the pigmented oil layer was found to result in a bright, shiny fabric surface, which may have potential for naturally weatherproof garments.


2012 ◽  
Vol 610-613 ◽  
pp. 569-572
Author(s):  
Potjanart Suwanruji ◽  
Rakchanok Sidarkote ◽  
Jantip Suesat

The blocking effect of reactive dye combinations during the exhaust dyeing of cotton was studied using C.I. Reactive Yellow 176, C.I. Reactive Red 239 and C.I. Reactive Black 5. In the exhaust dyeing of binary reactive dye combinations, reverse order of dyeing was carried out at the dye concentration of 1%owf. After the shade of dyed cottons were evaluated, we found that the combination of C.I. Reactive Yellow 176 and C.I. Reactive Black 5 exhibited a blocking effect. The blocking took place readily in the dyebath. Therefore, C.I. Reactive Blue 250 was used to replace C.I. Reactive Black 5 because of the similarity of their chromophores and reactive groups. The results showed less blocking effect, indicating low interaction between the dyes in the combination.


2020 ◽  
Vol 80 (3) ◽  
pp. 615-620
Author(s):  
Ü. D. Gül

Abstract Synthetic dyes, particularly reactive and acid dyes, are commonly used in the textile industry because of their advantages as excellent color fastness and brightness. Also, surfactants are used for an increment of coloring success in the textile industry. One of the major problems concerning textile wastewater is the treatment of the effluents containing both dyes and surfactants. Biological treatment systems are recommended as useful, economic and eco-friendly methods for treatment of industrial wastewater. The purpose of this study was to investigate the binary removal of a textile dye and a surfactant by growing Aspergillus versicolor culture in molasses medium. The effect of dye and surfactant concentration on the removal of dye and surfactant was determined. This study resulted that 100% of the surfactant and dye molecules removed together with the formation of a dye-surfactant complex by fungus. It is concluded that binary removal systems are very efficient for industrial wastewater treatment.


2021 ◽  
Author(s):  
Rafaela De Maman ◽  
Vilson Conrado da Luz ◽  
Laura Behling ◽  
Adriana Dervanoski ◽  
Clarissa Dalla Rosa ◽  
...  

Abstract The Indigo Blue dye is widely used in the textile industry, specifically in jeans dyeing, the effluents of which, rich in organic pollutants with recalcitrant characteristics, end up causing several environmental impacts, requiring efficient treatments. Several pieces of research have been conducted in search of effective treatment methods, among which is electrocoagulation. This treatment consists of an electrochemical process that generates its own coagulant by applying electric current on metallic electrodes, bypassing the use of other chemical products. The objective of this work was to evaluate the potential use of iron slag in the electrocoagulation of a synthetic effluent containing commercial dye Indigo Blue and the effluent from a textile factory. The quantified parameters were color, turbidity, pH, electrical conductivity, sludge generation, phenol removal, chemical oxygen demand (COD), and total organic carbon (TOC). The electrocoagulation treatment presented a good efficiency in removing the analyzed parameters, obtaining average removal in the synthetic effluent of 85 % of color and 100 % of phenol after 25 min of electrolysis. For the effluent from the textile factory, average reductions of 80 % of color, 91 % of turbidity, 100 % of phenol, 55 % of COD, and 73 % of TOC were measured after 60 min of electrolysis. The results obtained demonstrate the potential of using iron slag as an electrode in the electrocoagulation process in order to reuse industrial waste and reduce costs in the treatment and disposal of solid waste.


Sign in / Sign up

Export Citation Format

Share Document