scholarly journals Article Commentary: A Role for IR-β in the Free Fatty Acid Mediated Development of Hepatic Insulin Resistance?

2009 ◽  
Vol 2 ◽  
pp. BCI.S2996
Author(s):  
Samit Shah ◽  
Arthur G. Cox

Several studies have been conducted to elucidate the role of free fatty acids (FFAs) in the pathogenesis of type 2 diabetes, but the exact molecular mechanism by which FFAs alter glucose metabolism in the liver is still not completely understood. 1 – 4 In a recent publication, Ragheb and coworkers have examined the effect of free fatty acid (FFA) treatment on insulin signaling and insulin resistance by using immunoprecipitation and immunoblotting to study the effect of high concentrations of insulin and FFAs on insulin receptor-beta (IR-β) and downstream elements in the PI3K pathway using the fructose-fed hamster model. 5 Their results clearly show that free fatty acids have an insignificant effect on IR-β and supports previous findings that FFAs lead to insulin resistance in the liver via the PKC-NFκB pathway. 2 , 3

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 990
Author(s):  
Mifetika Lukitasari ◽  
Mohammad Saifur Rohman ◽  
Dwi Adi Nugroho ◽  
Mukhamad Nur Kholis ◽  
Nila Aisyah Wahyuni ◽  
...  

Background: Insulin resistance has been independently associated with cardiac diseases. A free fatty acid is recently known to induce cardiac insulin resistance due to low-grade inflammation. Therefore, the improvement of free fatty acid levels can also improve cardiac insulin resistance. This study investigated the combination of green tea and decaffeinated-light roasted green coffee extract in improvement of free fatty acid-induced cardiac insulin resistance by improving the adiponectin/FAS pathway. Methods: This study used 25 males Sprague-Dawley rats induced by a high-fat high sucrose diet and injection of low dose streptozotocin to make a metabolic syndrome (MS) rat model and standard chow as healthy control rats. The MS rats were treated with green tea (200 mg/ b. w.), decaffeinated-light roasted green coffee (300 mg/ b. w.), and the combination of both extracts in 9 weeks. Experimental groups in this study were divided into 5 groups: 1) MS (HFHS diet + STZ) group, 2) NC (normal chow) group, 3) GT (green tea extract) group, 4) GC (decaffeinated-light roasted green coffee extract), 5) CM (combination of both extracts) group. Adiponectin and HOMA-IR level was analysed using ELISA, and the gene expression of Adipo-R1, FAS, PI3K, PDK1, Akt, GLUT4 was measured by RT-PCR. Results: The combination of green tea and decaffeinated-light roasted green coffee showed synergistic effects in improving FFA levels. The adiponectin/FAS pathway was attenuated in the CM group. Moreover, the combination also showed improvement in cardiac insulin resistance markers such as IRS1/2, PI3K, PDK1, Akt, and GLUT4. Conclusions:  The combination of green tea and decaffeinated-light roasted green coffee extract improved cardiac insulin resistance better than green tea and green coffee extract administration alone by reducing free fatty acids levels through adiponectin/FAS pathway modulation.


1972 ◽  
Vol 128 (5) ◽  
pp. 1057-1067 ◽  
Author(s):  
E. D Saggerson

1. 0.5mm-Palmitate stimulated incorporation of [U-14C]glucose into glyceride glycerol and fatty acids in normal fat cells in a manner dependent upon the glucose concentration. 2. In the presence of insulin the incorporation of 5mm-glucose into glyceride fatty acids was increased by concentrations of palmitate, adrenaline and 6-N-2′-O-dibutyryladenosine 3′:5′-cyclic monophosphate up to 0.5mm, 0.5μm and 0.5mm respectively. Higher concentrations of these agents produced progressive decreases in the rate of glucose incorporation into fatty acids. 3. The effects of palmitate and lipolytic agents upon the measured parameters of glucose utilization were similar, suggesting that the effects of lipolytic agents are mediated through increased concentrations of free fatty acids. 4. In fat cells from 24h-starved rats, maximal stimulation of glucose incorporation into fatty acids was achieved with 0.25mm-palmitate. Higher concentrations of palmitate were inhibitory. In fat cells from 72h-starved rats, palmitate only stimulated glucose incorporation into fatty acids at high concentrations of palmitate (1mm and above). 5. The ability of fat cells to incorporate glucose into glyceride glycerol in the presence of palmitate decreased with increasing periods of starvation. 6. It is suggested that low concentrations of free fatty acids stimulate fatty acid synthesis from glucose by increasing the utilization of ATP and cytoplasmic NADH for esterification of these free fatty acids. When esterification of free fatty acids does not keep pace with their provision, inhibition of fatty acid synthesis occurs. Provision of free fatty acids far in excess of the esterification capacity of the cells leads to uncoupling of oxidative phosphorylation and a secondary stimulation of fatty acid synthesis from glucose.


1984 ◽  
Vol 102 (3) ◽  
pp. 381-386 ◽  
Author(s):  
R. Gross ◽  
P. Mialhe

ABSTRACT To elucidate the hypolipacidaemic effect of insulin in ducks, its action on the uptake of free fatty acids (FFA) by duck hepatocytes was determined. At low doses (10 mu./l) insulin stimulated FFA uptake. This effect was not observed with higher doses of insulin (20, 30 and 50 mu./l). Growth hormone at physiological concentrations and corticosterone (14·4 nmol/l) decreased basal activity, probably by reducing glucose metabolism and consequently α-glycerophosphate (α-GP) supply. Insulin was able to reverse the inhibition induced by GH and corticosterone on both FFA uptake and α-GP production. These results therefore suggest that the hypolipacidaemic effect of insulin may be partly mediated by its action on hepatic FFA uptake. J. Endocr. (1984) 102, 381–386


2019 ◽  
Author(s):  
Mohammad Aziz ◽  
Saeed Al Mahri ◽  
Amal Alghamdi ◽  
Maaged AlAkiel ◽  
Monira Al Aujan ◽  
...  

Abstract Background Colorectal cancer is a worldwide problem which has been associated with changes in diet and lifestyle pattern. As a result of colonic fermentation of dietary fibres, short chain free fatty acids are generated which activate Free Fatty Acid Receptors 2 and 3 (FFAR2 and FFAR3). FFAR2 and FFAR3 genes are abundantly expressed in colonic epithelium and play an important role in the metabolic homeostasis of colonic epithelial cells. Earlier studies point to the involvement of FFAR2 in colorectal carcinogenesis. Methods Transcriptome analysis console was used to analyse microarray data from patients and cell lines. We employed shRNA mediated down regulation of FFAR2 and FFAR3 genes which was assessed using qRT-PCR. Assays for glucose uptake and cAMP generation was done along with immunofluorescence studies. For measuring cell proliferation, we employed real time electrical impedance based assay available from xCelligence. Results Microarray data analysis of colorectal cancer patient samples showed a significant down regulation of FFAR2 gene expression. This prompted us to study the FFAR2 in colorectal cancer. Since, FFAR3 shares significant structural and functional homology with FFAR2, we knocked down both these receptors in colorectal cancer cell line HCT 116. These modified cell lines exhibited higher proliferation rate and were found to have increased glucose uptake as well as increased level of GLUT1. Since, FFAR2 and FFAR3 signal through G protein subunit (Gαi), knockdown of these receptors was associated with increased cAMP. Inhibition of PKA did not alter the growth and proliferation of these cells indicating a mechanism independent of cAMP/PKA pathway. Conclusion: Our results suggest role of FFAR2/FFAR3 genes in increased proliferation of colon cancer cells via enhanced glucose uptake and exclude the role of protein kinase A mediated cAMP signalling. Alternate pathways could be involved that would ultimately result in increased cell proliferation as a result of down regulated FFAR2/FFAR3 genes. This study paves the way to understand the mechanism of action of short chain free fatty acid receptors in colorectal cancer.


1961 ◽  
Vol 201 (5) ◽  
pp. 815-818 ◽  
Author(s):  
John J. Spitzer ◽  
William T. McElroy

The effects of epinephrine or norepinephrine were studied in dogs receiving insulin plus glucose prior to and during administration of the amine. Epinephrine caused a significantly smaller elevation of free fatty acids (FFA) with than without insulin plus glucose administration. Blood sugar responses were quantitatively similar. Epinephrine increased both hepatic uptake of FFA and hepatic release of glucose; these changes were similar to the ones found previously in dogs not receiving insulin plus glucose. The action of norepinephrine on elevating plasma FFA was only slightly and not significantly affected by the administration of insulin plus glucose. When the order of drug administration was reversed, infusion of insulin plus glucose lowered plasma FFA levels and hepatic FFA uptake in animals already receiving either epinephrine or nonepinephrine.


1961 ◽  
Vol 200 (5) ◽  
pp. 1095-1098 ◽  
Author(s):  
Frank J. Hohenleitner ◽  
John J. Spitzer

To measure the renal removal of free fatty acids from the plasma, simultaneous determinations of this metabolite were performed in a systemic artery and a renal vein in the anesthetized dogs. Renal plasma flow was also determined by the PAH method, and the renal uptake of free fatty acids was calculated. Concentrations of free fatty acids in renal venous plasma were usually lower than the arterial concentrations. The arteriovenous differences were statistically highly significant. The results also suggested that the degree of free fatty acid removal was proportional to the arterial concentration of this metabolite.


1962 ◽  
Vol 203 (2) ◽  
pp. 306-310 ◽  
Author(s):  
Martin E. Rothlin ◽  
Christine B. Rothlin ◽  
Vernon E. Wendt

The effect of the administration of norepinephrine, glucose and insulin, pentobarbital, and Hypertensin on the arterial concentration and composition of plasma free fatty acids (FFA) has been studied in man and dog. With a rise of the FFA concentration as produced by norepinephrine, the contribution of oleic acid to the total FFA increased, while that of stearic and palmitic acids decreased. The reverse changes in the FFA composition were observed when their arterial level fell under the influence of other agents studied. The FFA composition was dependent on the FFA concentration in arterial blood, but not on the experimental condition of the subject or animal at the time of analysis. At high FFA levels, the FFA composition approached that of depot fat.


1969 ◽  
Vol 26 (10) ◽  
pp. 2727-2736 ◽  
Author(s):  
Margaret L. Anderson ◽  
Elinor M. Ravesi

Freezing and holding cod muscle in the frozen state favored the association process that involves protein–free fatty acid (FFA) complex formation and begins during aging in ice. Changes in protein extractability, in ultracentrifugal patterns of protein extracted, and in phase contrast micrographs of inextractable muscle fragments were followed in muscle that had been aged in ice to produce various contents of FFA and then frozen and held at −29 C. After 11 months, these changes, which took place largely during the first week of storage, were comparable with those that occur when the FFA are formed during frozen storage. The results were consistent with a reaction rate that was greater at −29 C than at temperatures a few degrees above 0 C.


2012 ◽  
Vol 97 (1) ◽  
pp. 208-216 ◽  
Author(s):  
Joris Hoeks ◽  
Marco Mensink ◽  
Matthijs K. C. Hesselink ◽  
Kim Ekroos ◽  
Patrick Schrauwen

Context: Animal studies revealed that medium-chain fatty acids (MCFA), due to their metabolic characteristics, are not stored in skeletal muscle and may therefore not give rise to potentially hazardous lipid species impeding insulin signaling. Objective: We here hypothesized that infusion of medium-chain triacylglycerols (MCT) in healthy lean subjects does not lead to ectopic fat accumulation and hence does not result in lipid-induced insulin resistance. Design and Methods: Nine healthy lean male subjects underwent a 6-h hyperinsulinemic-euglycemic clamp with simultaneous infusion of 1) a 100% long-chain triacylglycerols (LCT) emulsion, 2) a 50/50% MCT/LCT emulsion, or 3) glycerol in a randomized crossover design. Muscle biopsies were taken before and after each clamp. Results: MCT/LCT infusion raised plasma free fatty acid levels to a similar level compared with LCT infusion alone. Despite elevated free fatty acid levels, intramyocellular triacylglycerol (IMTG) levels were not affected by the MCT/LCT emulsion, whereas LCT infusion resulted in an approximately 1.6-fold increase in IMTG. These differences in muscle fat accumulation did not result in significant differences in lipid-induced insulin resistance between LCT (−28%, P = 0.003) and MCT/LCT (−20%, P < 0.001). Total skeletal muscle ceramide content as well as lactosyl- and glucosylceramide levels were not affected by any of the interventions. In addition, the distribution pattern of all ceramide species remained unaltered. Conclusions: Although we confirm that MCFA do not lead to ceramide and IMTG accumulation in skeletal muscle tissue in humans, they do induce insulin resistance. These results indicate that, in humans, MCFA may not be beneficial in preventing peripheral insulin resistance.


1994 ◽  
Vol 61 (2) ◽  
pp. 281-288 ◽  
Author(s):  
Ana I. Nájera ◽  
Luis J. R. Barron ◽  
Yolanda Barcina

SummaryThe effect of brining time and smoking on the free fatty acid content of Idiazabal cheese during ripening was examined. The main free fatty acids considered underwent at least some increase during the first stage of ripening before day 90 and tended to level off around a constant value towards the end of the ripening period. There were significant differences in free fatty acid levels during ripening among cheeses with different brining times and between smoked and unsmoked cheeses. Brining time and smoking exerted marked effects on lipolytic activity during cheese ripening, depending upon the free fatty acid involved and ripening time. In general, brining and smoking led to increases in free fatty acid levels at the end of the ripening period; the different behaviour of butyric acid may be due to a specific lipolytic activity.


Sign in / Sign up

Export Citation Format

Share Document