scholarly journals Ring-shaped morphological features and interpreted small seamounts between southern Quebec (Canada) and the New England seamounts (USA) and their possible association with the New England hotspot track

2018 ◽  
pp. 223-265
Author(s):  
Ronald T. Marple ◽  
James D. Hurd, Jr. ◽  
Robert J. Altamura

 Enhancements of recently available high-resolution multibeam echosounder data from the western Gulf of Maine and Atlantic continental margin and light detection and ranging (LiDAR) and digital elevation model data from southeastern Quebec (Canada) and the northeastern United States have revealed numerous ring-shaped morphological features and interpreted small seamounts between the Monteregian Hills igneous province and the New England seamounts. The morphological features onshore are mainly ring-shaped depressions, several of which surround mapped igneous intrusions in the Monteregian Hills igneous province and White Mountain magma series. Most of the rings offshore are also depressions, although a few rings are curved ridges above the seafloor. The largest ring in the western Gulf of Maine is the 30-km-diameter Tillies ring that lies 20 km east of Cape Ann, MA. Several small (<3 km in diameter) round, flat-topped submerged hills that we interpret to be volcanic necks are also present beneath the western Gulf of Maine. The rings between Cape Cod and the continental slope are more subtle because of thicker sediments and poorer spatial resolution of the sonar data in this area. The southernmost ring-shaped features are located on the continental slope and upper continental rise and coincide with the northwestern end of the New England seamount chain. The concentration of these features between the Monteregian Hills igneous province and the New England seamounts suggests that they are igneous features that may be associated with the New England hotspot track. 

2017 ◽  
Author(s):  
Indra Riyanto ◽  
Lestari Margatama

The recent degradation of environment quality becomes the prime cause of the recent occurrence of natural disasters. It also contributes in the increase of the area that is prone to natural disasters. Flood history data in Jakarta shows that flood occurred mainly during rainy season around January – February each year, but the flood area varies each year. This research is intended to map the flood potential area in DKI Jakarta by segmenting the Digital Elevation Model data. The data used in this research is contour data obtained from DPP–DKI with the resolution of 1 m. The data processing involved in this research is extracting the surface elevation data from the DEM, overlaying the river map of Jakarta with the elevation data. Subsequently, the data is then segmented using watershed segmentation method. The concept of watersheds is based on visualizing an image in three dimensions: two spatial coordinates versus gray levels, in which there are two specific points; that are points belonging to a regional minimum and points at which a drop of water, if placed at the location of any of those points, would fall with certainty to a single minimum. For a particular regional minimum, the set of points satisfying the latter condition is called the catchments basin or watershed of that minimum, while the points satisfying condition form more than one minima are termed divide lines or watershed lines. The objective of this segmentation is to find the watershed lines of the DEM image. The expected result of the research is the flood potential area information, especially along the Ciliwung river in DKI Jakarta.


Author(s):  
Guizhi Wang

National administration of surveying, mapping and geoinformation started to launch the project of national fundamental geographic information database dynamic update in 2012. Among them, the 1:50000 database was updated once a year, furthermore the 1:250000 database was downsized and linkage-updated on the basis. In 2014, using the latest achievements of 1:250000 database, comprehensively update the 1:1000000 digital line graph database. At the same time, generate cartographic data of topographic map and digital elevation model data. This article mainly introduce national 1:1000000 cartographic data of topographic map, include feature content, database structure, Database-driven Mapping technology, workflow and so on.


Author(s):  
A.B. Baibatsha

For work materials used multispectral satellite imagery Landsat (7 channels), medium spatial resolution (14,25&ndash;90 m) and a digital elevation model (data SRTM). For interpretation of satellite images and especially their infrared and thermal channels allocated buried paleovalleys pre-paleogene age. Their total length is 228 km. By manifestation of the content of remote sensing paleovalleys distinctly divided into two types, long ribbon-like read in materials and space survey highlights a network of small lakes. By the nature of the relationship established that the second type of river paleovalleys flogs first. On this basis, proposed to allocate two uneven river paleosystem. The most ancient paleovalleys first type can presumably be attributed to karst erosion, blurry chalk and carbon deposits foundation. Paleovalleys may include significant groundwater resources as drinking and industrial purposes. Also we can control the position paleovalleys zinc and bauxite mineralization area and alluvial deposits include uranium mineralization valleys infiltration type and placer gold. Direction paleovalleys choppy, but in general they have a north-east orientation, which is controlled by tectonic zones of the foundation. These zones are defined as the burial place themselves paleovalleys and position of karst cavities in areas interfacing with other structures orientation. The association of mineralization to the caverns in the beds paleovalleys could generally present conditions of formation of mineralization and carry it to the "Niagara" type. The term is obviously best reflects the mechanism of formation of these ores.


2014 ◽  
Vol 641-642 ◽  
pp. 1191-1194 ◽  
Author(s):  
Dong Wen Liu ◽  
Zhi Yong Qiao ◽  
Ting Ting Wei ◽  
Shu Jiang ◽  
Ya Kai Chen ◽  
...  

Taking Daliuta mine as research object, use its 2002, 2011 two same period Landsat TM/ ETM and remote sensing image as the data source, use pixel dichotomy to get its vegetation coverage evolution trend data; Use DEM digital elevation model data in the region to generate digital terrain model based on ArcGIS, and make overlay analysis with the vegetation coverage evolution trend data to study the relationship between the vegetation coverage and terrain factor of the mine area. The results showed that: From 2002 to 2011, the vegetation coverage evolution trend of Daliuta mining mainly moderate improvement and significantly improvement, and concentrated in middle altitude, low slope, sunny area.


Polar Record ◽  
2002 ◽  
Vol 38 (204) ◽  
pp. 53-55 ◽  
Author(s):  
Philip T. Giles

AbstractIn the article by Hall and others (1995), a topographic correction factor (C) was developed for estimating actual land area by taking into account the effect of sloping terrain. An error that was made during image processing resulted in values of C being exaggerated. For this note, values of C for the example landscape in Glacier National Park were recalculated, and the results with and without the error are compared. It is shown that the error caused the mean value of C reported for the example landscape to be exaggerated by a factor of 2.62 times.


2009 ◽  
Vol 26 (7) ◽  
pp. 1367-1377 ◽  
Author(s):  
Rasmus Lindstrot ◽  
Rene Preusker ◽  
Jürgen Fischer

Abstract Measurements of the Medium-Resolution Imaging Spectrometer (MERIS) on the Environmental Satellite (Envisat) are used for the retrieval of surface pressure above land and ice surfaces. The algorithm is based on the exploitation of gaseous absorption in the oxygen A band at 762 nm. The strength of absorption is directly related to the average photon pathlength, which in clear-sky cases above bright surfaces is mainly determined by the surface pressure, with minor influences from scattering at aerosols. Sensitivity studies regarding the influences of aerosol optical thickness and scale height and the temperature profile on the measured radiances are presented. Additionally, the sensitivity of the retrieval to the accuracy of the spectral characterization of MERIS is quantified. The algorithm for the retrieval of surface pressure (SPFUB) is presented and validated against surface pressure maps constructed from ECMWF sea level pressure forecasts in combination with digital elevation model data. The accuracy of SPFUB was found to be within 10 hPa above ice surfaces at Greenland and 15 hPa above desert and mountain scenes in northern Africa and southwest Asia. In a case study above Greenland the accuracy of SPFUB could be enhanced to be better than 3 hPa by spatial averaging over areas of 40 km × 40 km.


2014 ◽  
Vol 571-572 ◽  
pp. 792-795
Author(s):  
Xiao Qing Zhang ◽  
Kun Hua Wu

Floods usually cause large-scale loss of human life and wide spread damage to properties. Determining flood zone is the core of flood damage assessment and flood control decision. The aim of this paper is to delineate the flood inundation area and estimate economic losses arising from flood using the digital elevation model data and geographic information system techniques. Flood extent estimation showed that digital elevation model data is very precious to model inundation, however, in order to be spatially explicit flood model, high resolution DEM is necessary. Finally, Analyses for the submergence area calculation accuracy.


Sign in / Sign up

Export Citation Format

Share Document