Assessment of the potential of feed enzyme additives to enhance utilization of corn silage fibre by ruminants

2008 ◽  
Vol 88 (1) ◽  
pp. 97-106 ◽  
Author(s):  
Jong-Su Eun ◽  
Karen A Beauchemin

We hypothesized that the fermentation of corn silage by a mixed culture of rumen microorganisms in an in vitro system could be increased using exogenous fibrolytic enzyme additives (FE), and that the improvement would depend on the dose of cellulase or xylanase activity provided. An in vitro assay was used to determine the effects of FE on gas production (GP) and degradability of fibre after 24 h of incubation in buffered ruminal fluid. Eight FE with endoglucanase and xylanase activities were evaluated at one dose (0.5 mg g-1 of forage dry matter), providing variable units of enzymic activity. Only one product improved fibre degradability (9.1 and 29.9% increases for neutral and acid detergent fibre, respectively; P < 0.05). The FE were reassessed when added to supply the same dose of enzymic activity: 807 units of endoglucanase or 477 units of xylanase activity g-1 of forage dry matter (a unit was defined as nmol of reducing sugar released min-1). The FE had greater impact on GP (21% increase; P < 0.05) and fibre degradation (29 and 60% increases for neutral and acid detergent fibre, respectively; P< 0.05) when equalized for endoglucanase activity than when equalized for xylanase activity. Enzyme products high in endoglucanase activity and low in xylanase activity have the potential to improve the use of corn silage by ruminants. Key words: Corn silage, degradability, exogenous fibrolytic enzymes, gas production

Author(s):  
D. T. Q. Carvalho ◽  
A. R. F. Lucena ◽  
T. V. C. Nascimento ◽  
L. M. L. Moura ◽  
P. D. R. Marcelino ◽  
...  

Abstract The objective was to evaluate the fermentation profile, in vitro gas production and nutritional quality of pornunça (Manihot spp.) silages containing levels of condensed tannin (CT; 0, 4, 8 and 12% on dry matter (DM) basis), at five opening times (0, 3, 7, 14, 28 and 56 days). A completely randomized design in a 4 × 5 factorial arrangement was adopted, with four replications, totalling 80 experimental silos. The pH and NH3-N analyses were performed at all opening times of the silos. The other analyses were performed only with silages opened at 56 days of storage. There was an interaction effect between CT levels and silo opening times for pH and NH3-N. Tannin levels in pornunça silages after 56 days ensiling increased the pH and DM and reduced crude protein (CP) and neutral detergent fibre (NDF). There was a quadratic effect for NH3-N, acetic acid, butyric acid, gas losses, dry matter recovery (DMR), hemicellulose and acid detergent fibre. Inclusion of 4 and 8% CT in pornunça silage promotes a rapid decline in pH, being within the acceptable limit for adequate fermentation at 3 days of ensiling. Silages with 4% CT establish the pH at 28 days of opening the silos, with reduced NH3-N. Silages with 4% CT present higher concentrations of acetic and butyric acids and greater DMR. Inclusion of CT in pornunça silage after 56 days ensiling increases DM and reduces CP and NDF, directly affecting the in vitro degradability and reducing gas production.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 194-195
Author(s):  
Jean-Philippe Marden ◽  
Virginie Marquis ◽  
Kheira Hadjeba Medjdoub ◽  
Marine Lacombe

Abstract Aflatoxins are secondary metabolites produced by Aspergillus species known to be the most prevalent contaminants in feedstuffs. In ruminants, contaminated AFB1 feeds usually exhibit symptoms including reduced feed efficiency and milk production and decreased appetite. The objective of this study was to investigate the effects of different concentrations of AFB1 on rumen fermentation parameters by using the ANKOM gas production protocol. Rumen fluid was collected from a cannulated dry dairy cow, filtered with cheese-cloth and diluted (1:1) with a standard buffer. Triplicates of 75 mL flasks were fed 0,75g of feed (79% corn silage, 15% alfalfa and 6% concentrates) and inoculated with 0 (blank), 0,2, 0,5, 1 and 2 ppm of AFB1. Flasks were placed in a rotating incubation at 39°C for 96h and connected to ANKOM GP system. After 96h of incubation, the contents of each flask were centrifuged. Supernatants were analyzed for total VFA and AFB1 while precipitates were dried at 104°C for DM disappearance. The experimentation was repeated weekly 3 times and named wk1, 2 and 3. Statistical analysis was done by SPSS using a univariate model. Results showed no significant differences on GP max at 96h among AFB1 concentrations. Only wk 1 showed that higher AFB1 concentration (2 ppm) decreased significantly (P &lt; 0,05) DM disappearance (- 8,2 pts) when compared to the blank. Total VFA contents (75,0 ± 1,6 mM) were not affected by AFB1. Wk 2 and 3 did not show any difference neither on DM disappearance nor on VFA (89,1 ± 1,6 mM; 110,2 ± 4,8 mM). It can be concluded that our in vitro model, GP did not reflect DM disappearance and it can be put forward that rumen fluid with low total VFA concentrations (≤ 75 mM) could be more sensible to AFB1 challenge.


2021 ◽  
Vol 42 (6) ◽  
pp. 3399-3414
Author(s):  
Angela Rocio Poveda-Parra ◽  
Odimári Pricila Prado-Calixto ◽  
Elzânia Sales Pereira ◽  
Fernando Luiz Massaro Junior ◽  
Larissa Nóbrega de Carvalho ◽  
...  

The objective of this study was to evaluate ingredients and diets containing increasing levels of crambe cake protein replacing soybean meal protein, with in vitro ruminal fermentation parameters using a gas production technique. Diets were formulated for feedlot lambs and contained different levels of crambe cake protein (0, 250, 500, 750, and 1000 g kg-1) replacing soybean meal protein. Corn silage was used as roughage. Carbohydrate digestion rates were estimated using the in vitro gas production technique and the cumulative gas production kinetics were analyzed using the bicompartmental logistic model. The parameters values of ruminal degradation kinetics were generated using the R statistical program with the Gauss-Newton algorithm and then subjected to analysis of variance and regression (when necessary) according to a completely randomized experimental design with five treatments and five replications. Upon carbohydrate fractionation of ingredients and experimental diets, it was observed that corn grain and corn silage presented the highest levels of total carbohydrates (TC), with values of 128.3 and 464.8 g kg-1 dry matter (DM) in fraction B2, respectively. Lower TC content was found for soybean meal and crambe cake (CC). There was a predominance of fractions A + B1 in the ingredients and experimental diets. The B2 fraction decreased in the diets with the inclusion of the CC protein, and CC presented the highest C fraction. Protein fractionation (g kg-1 DM and g kg-1 crude protein - CP), the ingredients and diets showed a higher proportion of fractions A and B1 + B2. In in vitro degradation, the diet without CC (0 g kg-1 DM) showed the highest final cumulative gas production (365.04 mL g-1 of incubated DM), while the CC presented the lowest volume (166.68 mL g-1 of incubated DM). The gas volume of non-fibrous carbohydrate fermentation and fibrous carbohydrate degradation rate exhibited a quadratic effect according increasing levels of CC (Pmax = 265.8 g kg-1 DM and Pmin = 376.3 g kg-1 DM, respectively). The lag time and final gas volume showed a decreasing linear effect with increasing levels of CC protein. The degradation rate of non-fibrous carbohydrates and the final volume of fibrous carbohydrates did not differ. Replacing soybean meal protein with CC protein at the level of 250 g kg-1 of dry matter in diets formulated for feedlot lambs leads to good profiles of ruminal fermentation kinetics with respect to the degradation of fibrous and non-fibrous carbohydrates.


2016 ◽  
Vol 46 (5) ◽  
pp. 889-894 ◽  
Author(s):  
Josimari Regina Paschoaloto ◽  
Jane Maria Bertocco Ezequiel ◽  
Marco Túlio Costa Almeida ◽  
Vanessa Ruiz Fávaro ◽  
Antonio Carlos Homem Junior ◽  
...  

ABSTRACT: The increasing availability of crude glycerin from biodiesel production has generated great stock in the industries. To solve this problem, crude glycerin is being used as an energy source to replace corn in livestock diets. This study evaluated the effects of the association of crude glycerin (10% on DM of diets) with different roughages in Nellore cattle diets on ruminal pH and ammonia, degradability, digestibility of dry matter and nutrients, and greenhouse gas production. Six ruminally cannulated Nellore steers were assigned to a 6×6 Latin square design. The following treatments were evaluated: Hydrolyzed Sugarcane associated or not with crude glycerin, Corn Silage associated or not with crude glycerin or Tifton-85 Hay associated or not with crude glycerin. Association of crude glycerin with roughages did not affect the rumen ammonia concentration and pH and dry matter intake, but reduced the intake of NDF for diets with Hydrolyzed Sugarcane and Corn Silage and reduced the digestibility of DM, OM, NDF, EE, CNF and starch and decreased the effective degradation at the rate of 8% h-1 for diets with Tifton-85 Hay. The association crude glycerin with Hydrolyzed Sugarcane reduced the production of CH4 and CO2 in mL g-1 of DM. The inclusion of crude glycerin affects differently nutrient utilization in diets with Corn Silage, Hydrolyzed Sugarcane or Tifton-85 hay. Moreover, promotes mitigation of greenhouse gases in diets with Hydrolyzed Sugarcane. Association of crude glycerin with Corn Silage in Nellore cattle diets showed better conditions of ruminal fermentation and utilization of nutrients.


2010 ◽  
Vol 148 (6) ◽  
pp. 723-733 ◽  
Author(s):  
H. KHALILVANDI-BEHROOZYAR ◽  
M. DEHGHAN-BANADAKY ◽  
K. REZAYAZDI

SUMMARYThe current study was conducted to determine chemical composition, nutrient content and availability, metabolizable energy (ME) content and nutritive value of sainfoin hay for ruminants. Three ruminally cannulated Holstein cows were used forin situandin vivoexperiments, to determine rumen degradability and digestibility of sainfoin hay. Apparent total tract digestibility of nutrients was determined with feeding of sainfoin hay as the sole diet to achieve 10% more than maintenance energy requirements. Six Zandi ewes were used in the palatability experiment. Means for dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF) and condensed tannins (CTs) of sainfoin hay were: 940·4 g/kg and 93·43, 12·13, 47·87, 43·33 and 2·13 g/kg DM, respectively.In situeffective degradability of CP and DM were 0·38 and 0·54 g/g with a ruminal outflow rate of 0·05/h, respectively. OM apparent digestibility was in the range of 0·592–0·689, respectively, for Tilley & Terry and total faecal collection assays. ME content of sainfoin hay, according to different methods (gas production,in vitroandin vivodetermined digestible organic matter in dry matter (DOMD)) was in the range 6·87–10·11 MJ/kg DM. Metabolizable protein (MP) content was 483·4 g/kg CP. Sainfoin was more palatable than alfalfa for sheep. It was concluded that sainfoin has a potential use in ruminant rations, especially if environmental conditions are not suitable for alfalfa production.


2017 ◽  
Vol 39 (3) ◽  
pp. 289 ◽  
Author(s):  
Paula Martins Olivo ◽  
Geraldo Tadeu dos Santos ◽  
Luís Carlos Vinhas Ítavo ◽  
Ranulfo Combuca da Silva Junior ◽  
Eduardo Souza Leal ◽  
...  

Agroindustrial co-products are a viable alternative for use in animal nutrition. Tests were conducted using eight different types of co-products and feed to evaluate the chemical composition, in vitro digestibility of dry matter, crude protein and neutral detergent fiber, and gas production by them. The co-products tested were: coffee hulls; pelleted citrus pulp; grape residue; soybean hulls; cottonseed; cassava foliage; and foods usually supplied to ruminants: corn silage and ground corn concentrate. Data of in vitro digestibility of dry matter, crude protein and neutral detergent fiber were tested by analysis of variance using the least square method; the results of gas production were interpreted by a non-linear regression by the Gauss-Newton method; and the effects of treatments were evaluated by the Tukey’s test. The coefficients of in vitro digestibility of dry matter, crude protein and neutral detergent fiber of co-products were different. Gas production was also different between co-products and feeds evaluated for the volume of gas produced from the fast and slow degradation fractions, degradation rate, bacterial colonization time, and the total volume of gas produced. The evaluated co-products exhibited greater in vitro dry matter digestibility compared to corn silage, except for cottonseed, grape residue, and cassava foliage. Co-products showed higher values of in vitro crude protein digestibility compared to corn silage, and a reduced in vitro digestibility of neutral detergent fiber, except for pelleted citrus pulp and soybean hulls. Corn silage produced larger volume of gas from the fast degradation fraction compared to the co-products and corn concentrate. Co-products analyzed had appropriate nutritional characteristics according to the techniques applied and can be included in ruminant diets. 


2014 ◽  
Vol 54 (2) ◽  
pp. 158 ◽  
Author(s):  
D. G. Vileta ◽  
M. Grosso ◽  
M. Fondevila

Chemical composition, in vitro fermentation and in situ degradability of the native South American legumes Adesmia bicolor and A. macrostachya were studied at vegetative (VG), flowering (FW) and seeding (SD) stages, and compared with those of alfalfa at 10% flowering (AL) in two separate studies. In A. bicolor, crude protein (CP) content was highest for FW, and FW and SD showed higher values than did AL (P < 0.05). At all stages, A. bicolor showed a lower content of neutral detergent fibre and acid detergent fibre than did AL (P < 0.05). The maximum gas production (Coefficient b) was highest for FW, and no differences were recorded between SD and AL, the lowest value being for VG (P < 0.05). The effective dry matter degradability was higher for FW and VG than for SD and AL (P < 0.05), whereas effective CP degradability tended (P = 0.077) to be higher for FW than for the other stages of A. bicolor, but no differences between FW and AL were detected. A. macrostachya had lower CP content (P < 0.001), but its VG and FW stages also had lower proportions of neutral detergent fibre, acid detergent fibre and acid detergent lignin (P < 0.01) than did AL. Chemical and fermentation parameters were affected by maturity of A. macrostachya. The effective dry matter degradability was higher for VG and FW than for SD and AL (P < 0.001), but no differences were apparent on the effective CP degradability. A. bicolor showed a high nutritive value, which was even higher than that of AL, and the maturity stage of this species did not markedly affect its nutritive value, whereas the nutritive value of A. macrostachya reduced as it matured.


2020 ◽  
Vol 20 (1) ◽  
pp. 207-218 ◽  
Author(s):  
Ekin Sucu

AbstractThis experiment was conducted to establish the effects of two types of microalgae [Chlorella vulgaris (AI), C. variabilis (AII) and their combination (AI+AII)] with two substrates (wheat and corn silages) on rumen fermentation, gas and methane production. To each substrate, one of 3 algae treatment was supplemented at 0% and 25% of the total incubated dry matter. A series of 5 measurement points (3, 6, 12, 24 and 48 h) were completed and the gas production was monitored. The proximate and mineral composition of microalgae and substrates were examined. At 48 h incubation rumen fermentation variables and CH4 production were also assessed. When compared with wheat silage, corn silage caused an increase in gas production (P<0.05). Ruminal gas production decreased in the algae groups when compared to the controls (0% algae, wheat and corn silages, P<0.05). Among algae, C. vulgaris had the strongest effect, decreasing gas production by 34%. Among algae, the total volatile fatty acids (VFA) and CH4 production were found to be lower in C. variabilis (P<0.001). Ammonia-N increased with the algae inclusion (P<0.05). But, the ruminal gas production, pH, acetate, the total VFA, CH4 and rumen fermentation efficiency were not affected by the substrate and algae interaction (P>0.05). The propionate was the highest (P<0.05) for corn silage when incubated with C. vulgaris. Ruminal butyrate was the lowest for the wheat silage when incubated with the mixture of algae (P<0.05). The NH3-N was the highest in corn silage when incubated with all algae types (P<0.05). Careful selection and combination of substrate and algae may positively manipulate rumen fermentation and may inhibit CH4 production. Further research is needed to validate these results in vivo.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 468-468
Author(s):  
Sandra Suescun-Ospina ◽  
Nelson Vera ◽  
Rita Astudillo ◽  
Jorge Avila-Stagno

Abstract Grape marc (GM) is a viticulture by-product used as cattle supplement in periods of shortage of conventional feed sources. It contains fats, high concentrations of polyphenols and has been reported to reduce enteric methane (CH4) emissions. In-vitro batch culture was used to study the effects of substitution of mixed hay (MH) for a traditional Chilean variety (Vitis vinifera “País”) of GM on in vitro dry matter disappearance (IVDMD), rumen fermentation parameters (short chain fatty acids, pH, partitioning factor), gas and CH4 production in a 60% forage diet (dry matter, DM). The study was a randomized complete design with 3 treatments and 3 replicates, incubated for 24 h at 39º C. Treatments were: T1 (Control): 20% MH, 40% corn silage, 40% concentrate; T2 = 10% MH, 10% GM, 40% corn silage, 40% concentrate; T3 = 20% GM, 40% corn silage, 40% concentrate. Means were compared with the Tukey test (P &lt; 0.05), and polynomial contrasts. Substitution of MH with GM significantly reduced ammonia nitrogen (NH3-N) by 50% (P &lt; 0.05), although it did not affect IVDMD, gas production or other rumen fermentation parameters (P &gt; 0.05). Total CH4 (mg) linearly decreased (P = 0.013) as concentrations of GM increased. Methane production (mg/g DM incubated) and yield (mg/g DM digested) decreased linearly (P = 0.002 and P = 0.003, respectively) as inclusion of GM increased. Inclusion of GM at 20% reduced CH4 production by 19% and CH4 yield by 16.4%. These results indicate that partial substitution of dietary fiber sources with traditional Chilean País GM in high fiber diets is a viable feeding alternative, and can decrease environmental impact (lower CH4 and ammonia emissions) of ruminant livestock, without negatively affecting rumen fermentation parameters.


2019 ◽  
Vol 59 (3) ◽  
pp. 515
Author(s):  
M. Sharifi ◽  
A. Taghizadeh ◽  
A. A. Khadem ◽  
A. Hosseinkhani ◽  
H. Mohammadzadeh

The present study was conducted to evaluate the effect of nitrate supplementation on dry-matter (DM) degradation and ruminal fermentation parameters by using in vitro gas production and in situ technique. In vitro gas production and in situ DM degradation in the presence or absence of nitrate were recorded at all incubation times. At all incubation times, diets incubated with nitrate gave a significantly lower gas production than did the other diets, except at 2-h incubation. Ruminal DM degradation did not differ among the experimental treatments. Furthermore, at most incubation times, total volatile fatty acids in diets containing nitrate were lower than those in the other treatments. Nitrate supplementation considerably increased gas production from the insoluble fraction, whereas it decreased gas production from the quickly soluble fraction, and potential gas production. Moreover, in all incubations, there were significant correlations between gas production and in situ DM-degradation parameters. The control diet had the greatest retained nitrogen content, but the diets containing nitrate had the greatest faecal nitrogen. The results showed that nitrate addition resulted in a lower gas production and volatile fatty acid production in in vitro assay. It was concluded that considering the strong posetive relationship between the two methodologies, the degradability parameters can be predicted from obtained gas production.


Sign in / Sign up

Export Citation Format

Share Document