scholarly journals In vitro ruminal fermentation kinetics of diets with crambe cake protein replacing soybean meal protein by gas production technique

2021 ◽  
Vol 42 (6) ◽  
pp. 3399-3414
Author(s):  
Angela Rocio Poveda-Parra ◽  
Odimári Pricila Prado-Calixto ◽  
Elzânia Sales Pereira ◽  
Fernando Luiz Massaro Junior ◽  
Larissa Nóbrega de Carvalho ◽  
...  

The objective of this study was to evaluate ingredients and diets containing increasing levels of crambe cake protein replacing soybean meal protein, with in vitro ruminal fermentation parameters using a gas production technique. Diets were formulated for feedlot lambs and contained different levels of crambe cake protein (0, 250, 500, 750, and 1000 g kg-1) replacing soybean meal protein. Corn silage was used as roughage. Carbohydrate digestion rates were estimated using the in vitro gas production technique and the cumulative gas production kinetics were analyzed using the bicompartmental logistic model. The parameters values of ruminal degradation kinetics were generated using the R statistical program with the Gauss-Newton algorithm and then subjected to analysis of variance and regression (when necessary) according to a completely randomized experimental design with five treatments and five replications. Upon carbohydrate fractionation of ingredients and experimental diets, it was observed that corn grain and corn silage presented the highest levels of total carbohydrates (TC), with values of 128.3 and 464.8 g kg-1 dry matter (DM) in fraction B2, respectively. Lower TC content was found for soybean meal and crambe cake (CC). There was a predominance of fractions A + B1 in the ingredients and experimental diets. The B2 fraction decreased in the diets with the inclusion of the CC protein, and CC presented the highest C fraction. Protein fractionation (g kg-1 DM and g kg-1 crude protein - CP), the ingredients and diets showed a higher proportion of fractions A and B1 + B2. In in vitro degradation, the diet without CC (0 g kg-1 DM) showed the highest final cumulative gas production (365.04 mL g-1 of incubated DM), while the CC presented the lowest volume (166.68 mL g-1 of incubated DM). The gas volume of non-fibrous carbohydrate fermentation and fibrous carbohydrate degradation rate exhibited a quadratic effect according increasing levels of CC (Pmax = 265.8 g kg-1 DM and Pmin = 376.3 g kg-1 DM, respectively). The lag time and final gas volume showed a decreasing linear effect with increasing levels of CC protein. The degradation rate of non-fibrous carbohydrates and the final volume of fibrous carbohydrates did not differ. Replacing soybean meal protein with CC protein at the level of 250 g kg-1 of dry matter in diets formulated for feedlot lambs leads to good profiles of ruminal fermentation kinetics with respect to the degradation of fibrous and non-fibrous carbohydrates.

2016 ◽  
Vol 46 (5) ◽  
pp. 889-894 ◽  
Author(s):  
Josimari Regina Paschoaloto ◽  
Jane Maria Bertocco Ezequiel ◽  
Marco Túlio Costa Almeida ◽  
Vanessa Ruiz Fávaro ◽  
Antonio Carlos Homem Junior ◽  
...  

ABSTRACT: The increasing availability of crude glycerin from biodiesel production has generated great stock in the industries. To solve this problem, crude glycerin is being used as an energy source to replace corn in livestock diets. This study evaluated the effects of the association of crude glycerin (10% on DM of diets) with different roughages in Nellore cattle diets on ruminal pH and ammonia, degradability, digestibility of dry matter and nutrients, and greenhouse gas production. Six ruminally cannulated Nellore steers were assigned to a 6×6 Latin square design. The following treatments were evaluated: Hydrolyzed Sugarcane associated or not with crude glycerin, Corn Silage associated or not with crude glycerin or Tifton-85 Hay associated or not with crude glycerin. Association of crude glycerin with roughages did not affect the rumen ammonia concentration and pH and dry matter intake, but reduced the intake of NDF for diets with Hydrolyzed Sugarcane and Corn Silage and reduced the digestibility of DM, OM, NDF, EE, CNF and starch and decreased the effective degradation at the rate of 8% h-1 for diets with Tifton-85 Hay. The association crude glycerin with Hydrolyzed Sugarcane reduced the production of CH4 and CO2 in mL g-1 of DM. The inclusion of crude glycerin affects differently nutrient utilization in diets with Corn Silage, Hydrolyzed Sugarcane or Tifton-85 hay. Moreover, promotes mitigation of greenhouse gases in diets with Hydrolyzed Sugarcane. Association of crude glycerin with Corn Silage in Nellore cattle diets showed better conditions of ruminal fermentation and utilization of nutrients.


2019 ◽  
Vol 59 (9) ◽  
pp. 1682
Author(s):  
Anusorn Cherdthong ◽  
Rittikeard Prachumchai ◽  
Chanadol Supapong ◽  
Benjamad Khonkhaeng ◽  
Metha Wanapat ◽  
...  

This experiment was conducted to investigate the utilisation of yeast waste as protein source to replace soybean meal in concentrate mixture on kinetic of gas, rumen ammonia-nitrogen and digestibility of nutrients by using in vitro gas production technique. The experimental design was a completely randomised design and the dietary treatments were replacing soybean meal with yeast wastein concentrate at the ratio of 100:0, 75:25, 50:50, 25:75 and 0:100, respectively. Yeast waste was obtained from KSL Green Innovation Public Co. Limited, Thailand. The gas production was recorded at 0, 0.5, 1, 2, 4, 6, 8, 12, 16, 24, 48, 72 and 96 h of incubation. The yeast waste contained 26.4% crude protein. Gas production from soluble fractions (a), gas production from the insoluble fraction (b), potential extent of gas production (a+b) and the gas production rate constants for the insoluble fraction (c) were not altered when increasing concentration of yeast waste replacing soybean meal (P > 0.05). Cumulative gas production (at 96 h of incubation) ranged from 69.3 to 72.8 mL and was similar among treatments. Ruminal NH3-N concentration was linearly increased (P < 0.05) whereas ruminal pH did not alter when inclusion various levels of yeast waste replacing soybean meal, which ranged from 15.2 to 19.1 mg/dL and 6.90 to 6.94, respectively. In vitro dry matter digestibility and in vitro organic matter digestibility did not changed by increasing levels of yeast waste in the diets (P > 0.05), except only in vitro dry matter digestibility at 12 h, which higher in soybean meal:yeast waste at 25:75 ratio (P < 0.05). Furthermore, propionate (C3) molar was linearly higher when compared between inclusion yeast waste and the control group whereas acetate was decreased quadratically (P < 0.05) and protozoal population tended to be decreased (P = 0.07) when increasing the level of replacing yeast waste. In conclusion, yeast waste could replace soybean meal in concentrate mixture with no negative effect on gas kinetics, rumen fermentation and in vitro digestibility, and therefore its use in animal feeding would contribute to a reduction in environmental pollution.


1998 ◽  
Vol 1998 ◽  
pp. 69-69
Author(s):  
S. Fakhri ◽  
A. R. Moss ◽  
D.I. Givens ◽  
E. Owen

The gas production (GP) technique has previously been used to estimate the gas volume (fermentable energy (FE)) of compound feed ingredients for ruminants (Newbold et al., 1996). It was shown that the FE content of feed mixtures was represented by the combination of the total gas from the incubation of the individual feeds. However this additivity might not be consistent throughout the incubation period. The objectives were to test whether 1. other GP parameters give better estimates of FE for simple mixtures and are they additive; 2. whether organic matter apparently degraded in the rumen (OMADR) explain differences in GP; and 3. to find out if there are any other better measures than OMADR for estimating FE.


Author(s):  
N.D. Meads ◽  
R. Tahmasbi ◽  
N. Jantasila

Greenhouse gas (GHG) emissions from livestock are an important consideration in environmental science. Estimating GHG production can be problematic at a farm or animal level, and requires controlled conditions to produce real data. An in vitro gas production technique (IVGPT) was developed to evaluate forage-based total mixed rations in digestion kinetics and GHG production. Two hundred and sixty samples of complete mixed rations (MR), which included a pasture component used in commercial lactating dairy herds, were collected around NZ across three calendar years, 2017-2019. Twenty of the 260 samples were 100% total mixed rations (TMR) with no pasture content. The samples were submitted for proximate analysis as well as IVGPT to generate GHG production figures. The results showed an average total gas production (TGP) of 129.82 ml/g dry matter (DM), 78.6% true digestibility (TDMD), 125.06 mg/g DM microbial biomass (MB), 20.16 g CH4/kg DM, and 12.8 MJME/kg DM. The average nutrient composition was dry matter (DM) 31.55%, crude protein (CP) 21.85%, neutral detergent fibre (NDF) 44.35%, and starch 7.03%. The IVGPT CH4 production was negatively correlated to NDF (r=-0.312), ADF (r=-0.193), TGP (r=-0.216), and was positively correlated with TDMD (r=0.250), apparent digestibility (ADMD) (r=0.614), starch (r=0.117) and volatile fatty acids (r=0.538). The MR diet showed a strong positive relationship with ADMD digestibility (P=0.01) and a negative relationship with fibre content (NDF, P=0.01 and ADF, P=0.01). However, CH4 production reduced linearly with increasing TGP (P=0.01). The results indicated that a greater CH4 production may be related to higher digestibility of mixed ration.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1205
Author(s):  
Musen Wang ◽  
Fujin Zhang ◽  
Xinxin Zhang ◽  
Ying Yun ◽  
Lei Wang ◽  
...  

The objective of this work was to evaluate the pH, chemical composition, minerals, vitamins, and in vitro rumen fermentation characteristics of silage prepared with lucerne, sweet maize stalk (MS), and their mixtures. Freshly chopped lucerne and MS were combined in ratios of 100:0 (M0, control), 80:20 (M20), 60:40 (M40), 40:60 (M60), 20:80 (M80), and 0:100 (M100) on a fresh matter basis. Each treatment was prepared in triplicate, and a total of eighteen silos were fermented for 65 days. After 65 days of fermentation, the pH values in M0, M20, M40, M60, M80, and M100 silages were 5.47, 4.84, 4.23, 4.13, 3.79, and 3.61, respectively. As the MS proportion in the mixtures increased, silage K, Ca, P, Na, Fe, and Cu concentrations linearly decreased (p < 0.001) and so did vitamins B5 and K1 and α-tocopherol. In vitro rumen dry matter and organic matter degradability, pH, ammonia, total volatile fatty acid, and gas production linearly decreased (p < 0.01), while neutral detergent fiber concentration linearly increased (p < 0.001), with increasing proportion of MS. The in vitro dry matter and organic matter degradability rapidly decreased when the MS percentage was ≥60%. In conclusion, the M40 silage is the most suitable for livestock utilization in local forage production considering the balance of silage pH, nutritional quality, and in vitro ruminal fermentation characteristics.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 194-195
Author(s):  
Jean-Philippe Marden ◽  
Virginie Marquis ◽  
Kheira Hadjeba Medjdoub ◽  
Marine Lacombe

Abstract Aflatoxins are secondary metabolites produced by Aspergillus species known to be the most prevalent contaminants in feedstuffs. In ruminants, contaminated AFB1 feeds usually exhibit symptoms including reduced feed efficiency and milk production and decreased appetite. The objective of this study was to investigate the effects of different concentrations of AFB1 on rumen fermentation parameters by using the ANKOM gas production protocol. Rumen fluid was collected from a cannulated dry dairy cow, filtered with cheese-cloth and diluted (1:1) with a standard buffer. Triplicates of 75 mL flasks were fed 0,75g of feed (79% corn silage, 15% alfalfa and 6% concentrates) and inoculated with 0 (blank), 0,2, 0,5, 1 and 2 ppm of AFB1. Flasks were placed in a rotating incubation at 39°C for 96h and connected to ANKOM GP system. After 96h of incubation, the contents of each flask were centrifuged. Supernatants were analyzed for total VFA and AFB1 while precipitates were dried at 104°C for DM disappearance. The experimentation was repeated weekly 3 times and named wk1, 2 and 3. Statistical analysis was done by SPSS using a univariate model. Results showed no significant differences on GP max at 96h among AFB1 concentrations. Only wk 1 showed that higher AFB1 concentration (2 ppm) decreased significantly (P &lt; 0,05) DM disappearance (- 8,2 pts) when compared to the blank. Total VFA contents (75,0 ± 1,6 mM) were not affected by AFB1. Wk 2 and 3 did not show any difference neither on DM disappearance nor on VFA (89,1 ± 1,6 mM; 110,2 ± 4,8 mM). It can be concluded that our in vitro model, GP did not reflect DM disappearance and it can be put forward that rumen fluid with low total VFA concentrations (≤ 75 mM) could be more sensible to AFB1 challenge.


1998 ◽  
Vol 22 ◽  
pp. 172-174
Author(s):  
D. L. Romney ◽  
F. C. Cadario ◽  
E. Owen ◽  
A .H. Murray

Parameters from in vitro gas production techniques could have potential as predictors of dry-matter intake (DMI) and digestibility. Fermentation is usually carried out under conditions where nitrogen (N) is not limiting. Therefore where N supply is a constraint to intake and digestibility, prediction equations may be inaccurate. This study compared the use of N-free and N-rich media in an in vitro fermentation method (Theodorou et al., 1994) and studied the relationships between in vitro and in vivo parameters obtained using both media.


2018 ◽  
Vol 41 (1) ◽  
pp. 39492 ◽  
Author(s):  
Rafael Henrique de Tonissi e Buschinelli de Goes ◽  
Luiz Henrique Xavier da Silva ◽  
Tatiana García Díaz ◽  
Antonio Ferriani Branco ◽  
Ana Lúcia Teodoro ◽  
...  

 The objective of this study was to evaluate the effect of the inclusion of sunflower cake replacing soybean meal in beef cattle diets on the in vitro digestibility of dry matter (IVDDM), organic matter (IVDOM), crude protein (IVDCP) and the ruminal fermentation kinetics and parameters. The experiment was analyzed according to a completely randomized design. The treatments consisted of four levels of sunflower cake, 0, 200, 400, 600 g kg-1, replacing soybean meal in the concentrate of beef cattle diets. The coefficients of IVDDM, IVDOM and IVDCP presented a quadratic effect with the addition of sunflower cake. The soluble fraction (fraction B) degradation rate and total gas production decreased linearly with the inclusion of sunflower cake. Values of pH in ruminal fluid were higher for levels 0, 200 and 600 g kg-1 sunflower cake. Sunflower cake can replace soybean meal by up to 280 g kg-1 in the concentrate of beef cattle diets, improving the in vitro digestibility of dry matter organic, matter and crude protein. Levels above 400 g kg-1 reduce ruminal digestion rate, digestibility and release of final fermentation products. 


1997 ◽  
Vol 77 (5) ◽  
pp. 757-768 ◽  
Author(s):  
M. Blümmel ◽  
K. Becker

Fifty-four roughages of known voluntary dry-matter intakes (DMI; range 7·8−35·2 g/kg live weight per d) were examined in vitro in a gas production test. Samples (200 mg) of roughage and roughage neutral-detergent fibre (NDF) respectively were incubated in a mixed suspension of rumen contents for 96 h and the gas volumes recorded after 4,6,8,12,24,30,36,48,54,60 and 96 h. The kinetics of gas production were derived from the volume recordings described by the exponential equation Y=A+B(l—e-ct) where A is the intercept and ideally reflects the fermentation of the soluble and readily available fraction of the feed, B describes the fermentation of the insoluble (but with time fermentable) fraction and c the fractional rate at which B is fermented per h; A+B describes total fermentation. In vitro true dry matter (TD) and NDF degradabilities (NDF-D) after 24 h incubation were also determined. Of the variation in DMI, 75% was accounted for by the in vitro gas production parameters A, B and c in stepwise multiple regressions; 82% of the variation in DMI was explained by the parameters (ANDF+BNDF) and cNDF as obtained from the incubation of roughage NDF. The rate constants (c) were less important than parameters related to the extent of gas production, accounting for only 6·5 (whole roughage) and 4·1% (NDF) of the variation in DMI. There was no statistical advantage in the use of the exponential model describing extent and rate of fermentation over some of the simple gas volume measurements: 75% of the variation in DMI was accounted for by in vitro gas production of whole roughage after 8 h of incubation. On average gas production from NDF measured from 24–96 h accounted for 81% of the variation in DMI. A combination of gas volume measurements after a short period of incubation (4–8 h) with a concomitant determination of NDF-D after many hours (≥24 h) can render NDF preparations and long incubation times redundant. A method is suggested to obtain two results for DMI prediction in one single incubation. Of the variation in DMI 80% was accounted for by the incubation of 500 mg whole roughage when incubation was terminated after 24 h and the residual undegraded substrate quantified.


2016 ◽  
Vol 16 (2) ◽  
pp. 333-341
Author(s):  
Seyed Masoud Davoodi ◽  
Mohsen Danesh Mesgaran ◽  
Ali Reza Vakili ◽  
Reza Valizadeh ◽  
Abdollah Ghasemi Pirbalouti

Present study was conducted to investigate the effect of including plant essential oils on in vitro ruminal fermentation and microbial nitrogen synthesis of a dairy cow diet rich in concentrate. The treatments consisted of the diet alone (control; BD) as well as containing 50 and 100 μl L-1 essential oil of thyme (BDT), mint (BDM), savory (BDS), or a mixture of the essential oils at the rate of 1:1:1 (BDmix). Essential oils decreased gas production at 24, 48 and 96 h of incubation compared with that of BD. However, mint at the rate of 50 or 100 μl L-1 resulted an increase in the microbial nitrogen when compared to BD, BDS and BDT. The nitrogen content of truly undegraded residu (NDFN) content and NH3-N concentration were lower, while the dry matter digestibility was greater in the BDmix, regardless of dosage levels, as compared with the control. The inclusion of a mixture of essential oils at 50 μl L-1 to the basal diet caused intensified dry matter disappearance, in comparison to other treatments. Results showed that the synergetic effects of essential oils together in a dairy cow diet of rich in concentrate can alter rumen microbial fermentation and improve microbial protein yield.


Sign in / Sign up

Export Citation Format

Share Document