Weed Control in Soybean as Influenced by Residual Herbicide Use and Glyphosate-Application Timing Following Different Planting Dates

2015 ◽  
Vol 29 (1) ◽  
pp. 71-81 ◽  
Author(s):  
Ryan P. DeWerff ◽  
Shawn P. Conley ◽  
Jed B. Colquhoun ◽  
Vince M. Davis

Soybean planting has occurred earlier in the Midwestern United States in recent years; however, earlier planting subjects the crop to longer durations of weed interference. This may change the optimum timing of POST glyphosate applications, or increase the need for residual herbicides applied PRE to optimize yield. A field study was conducted in 2012 and 2013 near Arlington, WI to determine the effect of planting date, residual herbicide use, and POST glyphosate timing on weed control and soybean yield. Planting dates were late April, mid-May, and early June. A PRE application of sulfentrazone plus cloransulam was applied to half the plots following each planting date. Glyphosate was applied POST to all plots at the V1, V2, V4, or R1 soybean growth stage. Planting date and glyphosate timing did not affect soybean yield in this study. However, averaged across years, planting dates, and POST glyphosate timings, yield increased from 3,280 to 3,500 kg ha−1when a PRE herbicide with residual soil activity was used. In POST-only treatments, delaying the planting date to June decreased weed density at POST application timing from 127 to 5 plants m−2(96%) and from 205 to 42 plants m−2(80%) in 2012 and 2013, respectively. Where a PRE was used, total weed density at POST application timing was always less within planting date, and also declined from early to late planting date 26 to 3 plants m−2(89%) and 23 to 6 plants m−2(74%) in 2012 and 2013, respectively. In conclusion, both PRE herbicide use and delayed soybean planting were effective strategies to reduce the number of in-crop weeds exposed to POST glyphosate and should be considered as strategies to reduce the number of weeds exposed to POST herbicides for resistance management.

2015 ◽  
Vol 95 (5) ◽  
pp. 973-981 ◽  
Author(s):  
Amit J. Jhala ◽  
Mayank S. Malik ◽  
John B. Willis

Jhala, A. J., Malik, M. S. and Willis, J. B. 2015. Weed control and crop tolerance of micro-encapsulated acetochlor applied sequentially in glyphosate-resistant soybean. Can. J. Plant Sci. 95: 973–981. Acetochlor, an acetamide herbicide, has been used for many years for weed control in several crops, including soybean. Micro-encapsulated acetochlor has been recently registered for preplant (PP), pre-emergence (PRE), and post-emergence (POST) application in soybean in the United States. Information is not available regarding the sequential application of acetochlor for weed control and soybean tolerance. The objectives of this research were to determine the effect of application timing of micro-encapsulated acetochlor applied in tank-mixture with glyphosate in single or sequential applications for weed control in glyphosate-resistant soybean, and to determine its impact on soybean injury and yields. Field experiments were conducted at Clay Center, Nebraska, in 2012 and 2013, and at Waverly, Nebraska, in 2013. Acetochlor tank-mixed with glyphosate applied alone PP, PRE, or tank-mixed with flumioxazin, fomesafen, or sulfentrazone plus chlorimuron provided 99% control of common waterhemp, green foxtail, and velvetleaf at 15 d after planting (DAP); however, control declined to ≤40% at 100 DAP. Acetochlor tank-mixed with glyphosate applied PRE followed by early POST (V2 to V3 stage of soybean) or late POST (V4 to V5 stage) resulted in ≥90% control of common waterhemp and green foxtail, reduced weed density to ≤2 plants m−2 and biomass to ≤12 g m−2, and resulted in soybean yields >3775 kg ha−1. The sequential applications of glyphosate plus acetochlor applied PP followed by early POST or late POST resulted in equivalent weed control to the best herbicide combinations included in this study and soybean yield equivalent to the weed free control. Injury to soybean was <10% in each of the treatments evaluated. Micro-encapsulated acetochlor can be a good option for soybean growers for controlling grasses and small-seeded broadleaf weeds if applied in a PRE followed by POST herbicide program in tank-mixture with herbicides of other modes of action.


Weed Science ◽  
1981 ◽  
Vol 29 (5) ◽  
pp. 610-615 ◽  
Author(s):  
T. R. Murphy ◽  
B. J. Gossett

Field studies were conducted at Florence and Clemson, South Carolina to measure the influence of soybean [Glycine max(L.) Merr.] planting dates on the length of early-season weed control needed to prevent yield reductions, the rate of shade development, and suppression of annual weeds by soybeans. The rate of shade development was similar for both planting dates during the 9- to 11-week period after planting for Florence and Clemson, respectively. The period of weed-free maintenance required to prevent soybean yield reductions was not affected by planting dates. With cultivation between rows, early- and late-planted soybeans required 3 weeks of weed-free maintenance to achieve maximum yields. Lower weed weights resulted from late than early soybean plantings. At Clemson, 3 weeks of weed-free maintenance for early and late plantings reduced weed weights 97 and 91%, respectively. Weed weights at Florence were reduced 85% with 3 weeks of weed-free maintenance for the late plantings, whereas 5 weeks were required to reduce weed weights 88% for early plantings.


2011 ◽  
Vol 25 (1) ◽  
pp. 38-43 ◽  
Author(s):  
Joseph M. Boudreaux ◽  
James L. Griffin

Research was conducted over 2 yr to evaluate soybean response to harvest aid herbicide treatments paraquat at 0.28 kg ai ha−1, paraquat with carfentrazone at 0.014 kg ai ha−1, and sodium chlorate at 6.72 kg ai ha−1. Indeterminate and determinate soybean cultivars were treated when moisture of seed collected from the uppermost four nodes of plants averaged 60, 50, 40, 30, and 20% (± 2%). For each soybean cultivar, the harvest aid treatment by application timing interaction was not significant, and data for harvest aid treatments were averaged. Application of harvest aid at 60% average seed moisture reduced yield for the maturity group (MG) IV indeterminate cultivar 15.4% compared with the nontreated; 100-seed weight was reduced 12.4%. Yield and seed weight were not negatively affected when harvest aid was applied at 50% average seed moisture and soybean was harvested 14 and 15 d before the nontreated control. Although planting date in the 2 yr for the indeterminate cultivar differed by 26 d, number of days from planting to harvest aid application at 50% average seed moisture was 112 and 116 d. For MG V and MG VI determinate cultivars, application of harvest aid at 60% average seed moisture reduced yield compared with the nontreated control 22 and 18.1%, respectively, and at 50% average seed moisture 15.6 and 4%, respectively; seed weight reductions of 8.9 to 33.3% accompanied the yield reductions of the two cultivars. Reduction in soybean yield and seed weight was not observed when harvest aid was applied at 40% average seed moisture, and harvest for the 2 yr was 8 and 9 d earlier for the MG V cultivar and 10 and 14 d earlier for the MG VI cultivar.


Plant Disease ◽  
2016 ◽  
Vol 100 (10) ◽  
pp. 2152-2157 ◽  
Author(s):  
David A. Marburger ◽  
Damon L. Smith ◽  
Shawn P. Conley

The impact of today’s optimal planting dates on sudden death syndrome (SDS) (caused by Fusarium virguliforme) development and soybean yield loss are not yet well understood. Field trials established in Hancock, Wisconsin during 2013 and 2014 investigated interactions between planting date and cultivar on SDS development and soybean yield. In 2013, disease index (DX) levels differed among cultivars, but results showed no difference between the 6 May and 24 May planting dates. Significantly lower DX levels were observed for the 17 June date. Greatest yields were found in the 6 May planting date, and yield losses were 720 (17%), 770 (20%), and 400 kg ha−1 (12%) for the 6 May, 24 May, 17 and June planting dates, respectively. In 2014, cultivars again differed for DX, but results showed highest DX levels in the 5 May planting date, with little disease observed in the 22 May and 11 June dates. Yield losses were 400 (12%) and 270 kg ha−1 (9%) for the 5 May and 22 May dates, respectively, but no difference was found in the 11 June date. Despite the most symptom development, these results suggest early May planting coupled with appropriate cultivar selection provides maximum yield potential and profitability in Wisconsin.


2012 ◽  
Vol 26 (4) ◽  
pp. 617-621 ◽  
Author(s):  
Laura E. Lindsey ◽  
Wesley J. Everman ◽  
Andrew J. Chomas ◽  
James J. Kells

Field studies were conducted from 2007 to 2009 in East Lansing, MI to evaluate three residual herbicide programs, three POST herbicide application timings, and two POST herbicides in glyphosate- and glufosinate-resistant corn. Herbicide programs included a residual PRE-applied herbicide followed by (fb) POST application (residual fb POST), a residual herbicide tank-mixed with a POST herbicide (residual + POST), and a nonresidual POST. Three POST herbicide application timings included early POST (EP), mid-POST (MP), and late POST (LP) at an average corn growth stage of V3/V4, V4/V5, and V5/V6, respectively. The two POST herbicides evaluated were glyphosate and glufosinate. Control of common lambsquarters and giant foxtail was evaluated 28 d after the LP application. Glyphosate often provided greater weed control than glufosinate. The LP application resulted in greater giant foxtail control compared with the EP application timing, which may be attributed to control of late-emerging weeds. The EP application timing improved common lambsquarters control compared with the LP application timing. The residual + POST program resulted in greater weed control compared with the residual fb POST program in all years. The effect of residual herbicide program, POST herbicide, and POST application timing on corn grain yield varied by year. In 2007, the use of glyphosate resulted in higher grain yield compared with glufosinate. In 2008, corn grain yield was the highest in the PRE fb POST program and with POST applications at EP and MP. To provide the most consistent weed control and minimize the likelihood of grain yield reductions, a PRE fb POST program applied at EP or MP is recommended.


2005 ◽  
Vol 19 (1) ◽  
pp. 102-107 ◽  
Author(s):  
MATTHEW W. MYERS ◽  
WILLIAM S. CURRAN ◽  
MARK J. VANGESSEL ◽  
BRADLEY A. MAJEK ◽  
BARBARA A. SCOTT ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Sarah Striegel ◽  
Maxwel C. Oliveira ◽  
Ryan P. DeWerff ◽  
David E. Stoltenberg ◽  
Shawn P. Conley ◽  
...  

Roundup Ready 2 Xtend® [glyphosate- and dicamba-resistant (DR)] soybean is a novel trait option for postemergence (POST) control of herbicide-resistant broadleaf weeds in soybean. With increased use of labeled dicamba products POST in DR soybean and recommendations to include a soil-residual herbicide POST (e.g., layered residual approach), research on how combinations of these approaches influence weed control, weed seed production, and soybean grain yield is warranted. The objective of this research was to evaluate the effects of (1) flumioxazin applied preemergence (PRE) followed by (fb) dicamba plus glyphosate applied POST at different crop developmental stages and (2) acetochlor POST as a layered residual approach on weed control, weed seed production, and soybean yield to determine the optimal POST timing in DR soybean. A field study was conducted in Wisconsin at three sites in 2018 and four sites in 2019 to evaluate flumioxazin (43.4 g ai ha−1, WDG 51%) PRE fb dicamba (560 g ae ha−1, SL) plus glyphosate (1,101 g ae ha−1, SL) POST in DR soybean at three stages: early-POST (EPOST, V1-V2), mid-POST (MPOST, V3-V4), and late-POST (LPOST, V5-V6/R1) with or without a soil-residual herbicide POST (acetochlor, 1,262 g ai ha−1, ME). Weed community composition was site-specific; difficult-to-control broadleaf species included giant ragweed (Ambrosia trifida L.) and waterhemp [Amaranthus tuberculatus (Moq.) J.D. Sauer]. Dicamba plus glyphosate applied MPOST and LPOST provided greater control, weed biomass reduction, and density reduction of giant ragweed and waterhemp when compared with EPOST treatments. Giant ragweed and waterhemp had not reached 100% cumulative emergence at EPOST, and plants that emerged after EPOST produced seed. There was some benefit to including acetochlor as a layered residual at EPOST as indicated by a residual by POST timing interaction for waterhemp density reduction. Complete waterhemp control was not attained at one site-year. For remaining site-years, dicamba plus glyphosate applied MPOST (V3-V4) provided season-long weed control, reduced weed seed production, and optimized soybean grain yield compared with other POST treatments. Results highlight the importance of timely POST applications and suggest utilization of a POST layered residual needs to be timed appropriately for the window of active weed species emergence.


2019 ◽  
Vol 34 (2) ◽  
pp. 220-228
Author(s):  
Allyson Mierau ◽  
Eric N. Johnson ◽  
Robert H. Gulden ◽  
Jessica D. Weber ◽  
William E. May ◽  
...  

AbstractIn recent years, soybean acreage has increased significantly in western Canada. One of the challenges associated with growing soybean in western Canada is the control of volunteer glyphosate-resistant (GR) canola, because most soybean cultivars are also glyphosate resistant. The objective of this research was to determine the impact of soybean seeding rate and planting date on competition with volunteer canola. We also attempted to determine how high seeding rate could be raised while still being economically feasible for producers. Soybean was seeded at five different seeding rates (targeted 10, 20, 40, 80, and 160 plants m−2) and three planting dates (targeted mid-May, late May, and early June) at four sites across western Canada in 2014 and 2015. Soybean yield consistently increased with higher seeding rates, whereas volunteer canola biomass decreased. Planting date generally produced variable results across site-years. An economic analysis determined that the optimal rate was 40 to 60 plants m−2, depending on market price, and the optimal planting date range was from May 20 to June 1.


Weed Science ◽  
2016 ◽  
Vol 64 (SP1) ◽  
pp. 649-654 ◽  
Author(s):  
Stephen B. Powles ◽  
Todd A. Gaines

An overreliance on herbicides in several important grain- and cotton-producing regions of the world has led to the widespread evolution of herbicide-resistant weed populations. Of particular concern are weed populations that exhibit simultaneous resistance to multiple herbicides (MHR). Too often, herbicides are the only tool used for weed control. We use the term herbicide-only syndrome (HOS) for this quasi-addiction to herbicides. Growers and their advisers focus on herbicide technology, unaware of or ignoring basic evolutionary principles or the necessary diversity provided by other methods of weed control. Diversity in weed control practices disrupts resistance evolution. Significant challenges exist to implementing diversity, including how to address information so that producers choose to alter existing behaviors (HOS) and take calculated risks by attempting new and more complex strategies. Herbicide resistance management in the long term will require creativity in many sectors, including roles for growers, industry, researchers, consultants, retailers, and regulators. There can be creativity in herbicide registration and regulation, as exemplified by the recent U.S. Environmental Protection Agency program that encourages herbicide registrants to register products in minor crops. We propose one idea for a regulatory incentive to enable herbicide registrants in jurisdictions such as the United States to receive an extended data exclusivity period in exchange for not developing one new herbicide in multiple crops used together in rotation, or for implementing stewardship practices such as robust mixtures or limitations on application frequency. This incentive would provide a mechanism to register herbicides in ways that help to ensure herbicide longevity. Approaches based only on market or financial incentives have contributed to the current situation of widespread MHR. Our suggestion for regulatory creativity is one way to provide both financial and biological benefits to the registering company and to the overall stakeholder community by incentivizing good resistance management.


Sign in / Sign up

Export Citation Format

Share Document