ROOTING CAPABILITY AS IT RELATES TO SOIL MOISTURE EXTRACTION AND OSMOTIC POTENTIAL OF SEMIDWARF AND NORMAL-STATURED GENOTYPES OF SIX-ROW BARLEY (HORDEUM VULGARE L.)

1980 ◽  
Vol 60 (1) ◽  
pp. 241-248 ◽  
Author(s):  
R. B. IRVINE ◽  
B. L. HARVEY ◽  
B. G. ROSSNAGEL

The rooting capabilities of four semidwarf and two normal-statured genotypes were estimated by 32P uptake and extraction of roots from a column of soil. The two height groups did not differ in root volume when the plants were grown in a rooting medium composed of three parts sand and one part topsoil. Rooting was estimated under field conditions by placing 32P in the soil at 15, 30, 60, and 90 cm and measuring 32P activity in the aerial plant portions 15, 30, 45 and 61 days from seeding. Semidwarf and normal-statured types had the same relative distribution of 32P uptake on all days. Water uptake by semidwarf and normal height genotypes was similar over the season in both environments receiving incident rainfall. There was a significant effect of environment on the osmotic potential of the last fully developed leaf. Plants growing in environments with low soil water developed lower osmotic potentials. However, there were no differences in genotypic reponse indicating similar osmotic adjustment. It was concluded that semidwarf and normal genotypes do not differ in rooting water uptake or osmotic adjustment due to plant stature.

1980 ◽  
Vol 7 (2) ◽  
pp. 181 ◽  
Author(s):  
MM Jones ◽  
NC Turner

Sunflower plants were grown in large volumes of soil and slowly water-stressed by withholding water. The tissue water relationships of leaves at various stages of stress and of leaves of equivalent well watered controls were studied by the pressure chamber technique. Plants were stressed either when leaf 17 was expanding or when it was fully expanded. When expanding leaves reached a moderate level of stress (predawn leaf water potential of -0.9 MPa), the osmotic potentials at full turgor and zero turgor were lower than the control values by 0.1 MPa and 0.2 MPa, respectively. When fully expanded leaves were stressed to a similar degree (predawn leaf water potential of - 1.1 MPa), the osmotic potentials at full turgor and zero turgor were lower than the control values by 0.2 MPa and 0.3 MPa, respectively. The development of more severe stress in the fully expanded leaves was not accompanied by any further osmotic adjustment. However, when the expanding leaves reached a predawn leaf water potential of -2.3 MPa, the values of leaf osmotic potential at full turgor and zero turgor were lower than the values for the well watered plants by 0.4 MPa and 0.6 MPa, respectively. In expanding leaves prestressed to a predawn leaf water potential of -2.3 MPa, the osmotic potential at full turgor was significantly less than the control values for at least 7 days after rewatering. Stress had no effect on the bulk modulus of elasticity. It is concluded that both expanding and fully expanded sunflower leaves show osmotic adjustment.


Author(s):  
Kousik Atta ◽  
Jahnavi Sen ◽  
Pravachan Chettri ◽  
Anjan Kumar Pal

Background: Salinity and drought are the major abiotic stresses and both can cause osmotic imbalances. Drought stress directly results in osmotic stress whereas salinity problem firstly disrupts the water balance and eventually induces ion toxicity which results in cyto-toxicity, metabolic impairment, nutrient imbalance and finally poor crop growth and yield. The co-ordinated up-regulation or constitutive expression of antioxidative system in plants is the main defense in plant against these stresses and thus the present experiment was undertaken to study the antioxidant responses under drought and salinity stress at seedling stage in ricebean (Bidhan 1). Methods: For studying the effect of iso-osmotic potential of salinity and drought stress solutions of NaCl and PEG 6000 with -0.2 MPa (50mM NaCl and 10% PEG), -0.4 MPa (100 mM NaCl and 12% PEG) and -0.8 MPa (200mM NaCl and 18% PEG) osmotic potential were used. The experiment was done in the laboratory of Department Plant Physiology, Bidhan Chandra Krishi Viswavidyalaya (BCKV), Mohanpur, Nadia and West Bengal in the year 2017-18 and 2018-19. Result: Under moderate to high intensity of osmotic stresses the leaf proline content decreased. The mild and medium stress treatments induced much higher activity of GPOX and APX in the leaf which then decreased somewhat as the intensity of stress increased. The experiment showed that drought stress was found to produce more drastic effects on seedling growth in ricebean as compared to the salinity stress at iso-osmotic potentials.


2003 ◽  
Vol 83 (4) ◽  
pp. 395-403 ◽  
Author(s):  
Z. Zheng ◽  
L. E. Parent ◽  
J. A. MacLeod

The P dynamics in soils should be quantified in agricultural soils to improve fertilizer P (FP) efficiency while limiting the risk of P transfer from soils to water bodies. This study assessed P transformations following FP addition to Gleysolic soils. A pot experiment was conducted with five soils varying in texture from sandy loam to heavy clay, and receiving four FP rates under barley (Hordeum vulgare L.)-soybean (Glycine max L.) rotations. A modified Hedley procedure was used for soil P fractionation. Soil resin-P and NaHCO3-Pi contents were interactively affected by texture and FP. The NaHCO3-Po, NaOH-Po, HCl-P and H2SO4-P were only affected by soil texture. Proportions of 78 and 90% of the variation in labile and total P were, respectively, related to soil clay content. The FP addition increased resin-P, NaHCO3-Pi and NaOH-Pi and -Po contents in coarse-textured soils, but the amount added was not sufficient to mask the initial influence of soil texture on the sizes of soil P pools. Plant P uptake was proportional to FP rate but less closely linked to clay content. The average increase in labile P per unit of total FP added in excess of plant exports was 0.85, 0.8 2 , 0.73, 0.55 and 0.24 for the sandy loam, loam, clay loam, clay and heavy clay soil, respectively. The results of this study stress the important of considering soil texture in Gleysolic soils when assessing P accumulation and transformations in soils, due to commercial fertilizers applied in excess of crop removal. Key words: P fractions, clay content, fertilizer P, plant P uptake, soil texture


1986 ◽  
Vol 13 (5) ◽  
pp. 659 ◽  
Author(s):  
SP Robinson ◽  
GP Jones

Glycinebetaine was determined in leaves and in isolated chloroplasts of spinach (Spinacia oleracea) by nuclear magnetic resonance spectroscopy. Some leakage of glycinebetaine from the chloroplasts occurred during the isolation so the concentration in chloroplasts in vivo could be up to 1.5 times higher than that measured in isolated chloroplasts. It was demonstrated that any contamination of the chloroplast preparations by glycinebetaine originating from other cellular compartments or from broken chloroplasts would have amounted to less than 10% of the measured values. Leaf osmotic potential of salt-stressed plants was -2.09 MPa compared to -0.91 MPa in non-stressed controls. This was accompanied by a sixfold increase in glycinebetaine content in the leaf but the levels of choline and proline were not increased. In chloroplasts isolated from control leaves the calculated glycinebetaine concentration was 26 mM which was 10-fold higher than the concentration in the leaf as a whole but only contributed 7% of the osmotic potential of the chloroplast. Chloroplasts from salt-stressed plants contained up to 300 mM glycinebetaine which was 20 times the concentration in the leaf as a whole. The glycinebetaine concentration in chloroplasts from salt-stressed leaves was equivalent to an osmotic potential of -0.75 MPa and this contributed 36% of the osmotic potential of the chloroplast and 64% of the decrease in osmotic potential induced by salt stress. At least 30-40% of the total leaf glycinebetaine was localized in the chloroplast. The results demonstrate that glycinebetaine accumulates in chloroplasts to provide osmotic adjustment during salt stress and provide support for the hypothesis that glycinebetaine is a compatible cytoplasmic solute which may be preferentially located in the cytoplasm of cells.


1987 ◽  
Vol 14 (6) ◽  
pp. 669 ◽  
Author(s):  
BP Naidu ◽  
GP Jones ◽  
LG Paleg ◽  
A Poljakoff-Mayber

Fifteen species of Melaleuca and two species of Callistemon from the field were examined to determine whether they accumulated nitrogen-containing compatible solutes and, if so, which. In addition to L-proline, N-methyl-L-proline (MP) (isolated for the first time from plants), trans-4-hydroxy-N-methyl- L-proline (MHP), and N, N'-dimethyl-trans-4-hydroxy-L-proline (DHP) were found in various combinations in the 15 Melaleuca species. M. lanceolata seedlings were subjected to water or salinity stress and M. uncinata to water stress under laboratory conditions. In both species significant reductions in leaf water potential (Ψw), osmotic potential (Ψs), turgor potential (Ψp), and relative water content (RWC) were observed in response to water stress. Salinised M. lanceolata plants showed considerable osmotic adjustment and maintained Ψp comparable to that of control plants; salinity, however, decreased RWC. In response to the imposed stresses under laboratory conditions, proline and MHP levels in M. lanceolata, and MHP and DHP levels in M. uncinata, increased. In addition to possible protective or osmotic roles in vivo, these proline analogues may be useful in chemotaxonomic investigations of Melaleuca species.


Weed Science ◽  
1981 ◽  
Vol 29 (1) ◽  
pp. 83-86 ◽  
Author(s):  
R. K. Mann ◽  
C. E. Rieck ◽  
W. W. Witt

Mechanical scarification of burcucumber (Sicyos angulatusL.) seeds resulted in increased water absorption and germination. Burcucumber germination occurred at temperatures ranging from 15 to 35 C with optimum germination occurring from 20 to 30 C. Scarified burcucumber seeds were more sensitive to simulated moisture stress than were either soybean [Glycine max(L.) Merr. ‘Williams’] or corn [Zea maysL. ‘Pioneer Brand 3369A’]. Regardless of osmotic potential, intact burcucumber seeds did not germinate; scarified seeds germinated at osmotic potentials to −6 bars. Cold stratification at 4 C for 18 weeks modified seedcoat permeability so that 11% of non-scarified burcucumber seeds germinated. Increasing depth of planting decreased emergence with limited emergence occurring at depths of 15 and 16 cm in field and growth chamber studies, respectively.


2015 ◽  
Vol 95 (4) ◽  
pp. 779-786 ◽  
Author(s):  
S. M. Ross ◽  
J. R. King ◽  
C. M. Williams ◽  
S. M. Strydhorst ◽  
M. A. Olson ◽  
...  

Ross, S. M., King, J. R., Williams, C. M., Strydhorst, S. M., Olson, M. A., Hoy, C. F. and Lopetinsky, K. J. 2015. The effects of three pulse crops on a second subsequent crop. Can. J. Plant Sci. 95: 779–786. Pulse crops can provide benefits to cropping systems, but few studies follow the effects beyond one subsequent crop. This study investigated the effects of three pulses on 2 yr of subsequent crops at Barrhead and St. Albert in central Alberta. In year 1 (YR1), field pea (Pisum sativum L.), faba bean (Vicia faba L.), lupin (Lupinus angustifolius L.), barley (Hordeum vulgare L.), and canola (Brassica napus L.) were grown without added N. The design included plus N controls, eight different crops in YR2, and barley in YR3. YR1 effects on YR3 barley varied between sites and years, and drought conditions in 2009 affected results. Effects of YR1 faba bean were greater than pea or lupin. Increases in YR3 barley grain yields averaged 11% (0.33 Mg ha–1) and increases in seed N yields averaged 11% (7.2 kg N ha–1) after YR1 faba bean, compared with after YR1 canola or barley without added N (BCO). Increases in YR3 barley grain yields and seed N yields averaged 3 to 5% after YR1 pea or lupin, compared with BCO.YR1 crops had few effects on YR3 barley P uptake. Results indicated that pulse crops can improve the yield and quality of a second subsequent crop.


2006 ◽  
Vol 33 (2) ◽  
pp. 207 ◽  
Author(s):  
Hong Liao ◽  
Xiaolong Yan ◽  
Gerardo Rubio ◽  
Steve E. Beebe ◽  
Matthew W. Blair ◽  
...  

Root gravitropism determines the relative distribution of plant roots in different soil layers, and therefore, may influence the acquisition of shallow soil resources such as phosphorus (P). Growth pouch and field studies were conducted to evaluate root gravitropism of common bean (Phaseolus vulgaris L.) in response to P deficiency and to detect quantitative trait loci (QTL) associated with this trait. A deep-rooted genotype, DOR364, was crossed with a shallow-rooted genotype, G19833, to obtain 86 F5.7 recombinant inbred lines (RILs). Root gravitropic traits were measured as basal root growth angle (BRGA), shallow basal root length (SBRL, basal root length in the top 0-3 cm of soil) and relative shallow basal root length (RSBRL, percentage of basal root length in the top 0-3 cm of soil relative to total basal root length). Large genetic variability for these traits was found in the parents and RILs, with BRGA ranging from -18.73 to 56.69� and SBRL ranging from 0.42 to 2.63 m per plant. The parents and six RILs with contrasting root gravitropism were further evaluated in the field, where root shallowness was significantly correlated with plant growth and P uptake. QTL were detected by single point analysis (SPA), interval mapping (IM) and composite interval mapping (CIM) techniques with a genetic map for the DOR364 � G19833 population consisting of 236 molecular markers. The IM�/�CIM QTL were detected among the 11 linkage groups of common bean, with 16 QTL controlling the above root traits and six QTL controlling P acquisition efficiency (PAE) in the field study. At least three of the root trait QTL were associated with QTL for PAE, suggesting that root gravitropic traits are associated with PAE and that QTL for these traits can be used to facilitate selection and breeding for higher P efficiency in common bean and other crops.


1989 ◽  
Vol 67 (6) ◽  
pp. 1681-1688 ◽  
Author(s):  
T. J. Tschaplinski ◽  
T. J. Blake

Organic solute concentrations of five hybrid poplar cultivars were compared to determine the relationship between water-stress tolerance, tissue solute concentration, and growth rate under field conditions. In the expanding foliage of the faster growing Populus deltoides Bartr. × P. balsamifera L. (Jackii 4), the saturated osmotic potential and turgor loss point osmotic potential were 0.18 MPa and 0.47 MPa lower, respectively, than in the slower growing P. deltoides × P. balsamifera (Jackii 7). The expanding foliage of Jackii 4 had higher (ca. 50%) concentrations of organic solutes, attributable mainly to salicyl alcohol, salicin, sucrose, and an unidentified compound. The coupling of high productivity and stress tolerance in Jackii 4 suggests that these may be compatible rather than competing attributes. Water-stress studies on P. deltoides Bartr. × P. nigra L. (DN 22) under greenhouse conditions demonstrated that stressed trees accumulated 4 times the soluble sugar concentrations of well-watered trees, lowering the saturated osmotic potential by 0.55 MPa and turgor loss point osmotic potential by 1.0 MPa. Leaves were the primary site of osmotic adjustment to water stress and roots showed no adjustment. The use of repeated drying cycles in planting stock may aid survival of postplanting stress in species capable of osmotic adjustment. The relationship between stress tolerance and solute concentrations in the greenhouse water-stress study paralleled that of the field study.


Sign in / Sign up

Export Citation Format

Share Document