PATTERNS OF WATER UPTAKE AND ROOT DISTRIBUTION OF CHILLI PEPPERS GROWN IN SOIL COLUMNS

1987 ◽  
Vol 67 (2) ◽  
pp. 531-535 ◽  
Author(s):  
N. R. HULUGALLE ◽  
S. T. WILLATT

Root distribution and water uptake patterns of individual chilli pepper (Capsicum annuum L. ’Long Slim Cayenne’) plants growth in 1-m-high soil columns in plastic cylinders were examined under irrigated and nonirrigated conditions. Roots were able to grow through the soil profile and consequently extract water from a soil which was conducive to root growth. Water uptake occurred both in the irrigated and in the nonirrigated treatment throughout the soil profile. Uptake was highest in the top 0.50 m of the former and was a result of greater water availability rather than lack of root growth at greater depths. Chilli pepper plants can, under droughty conditions, extract subsoil moisture.Key words: Chilli pepper, soil moisture, water uptake, root growth

2017 ◽  
Author(s):  
Alessandro Anav ◽  
Chiara Proietti ◽  
Laurent Menut ◽  
Stefano Carnicelli ◽  
Alessandra De Marco ◽  
...  

Abstract. Soil moisture and water stress play a pivotal role in regulating stomatal behaviour of plants; however, in the last decade, the role of water availability was often neglected in atmospheric chemistry modelling studies as well as in integrated risk assessments, despite through stomata plants remove a large amount of atmospheric compounds from the lower troposphere. The main aim of this study is to evaluate the effect of soil water limitation on stomatal conductance and assess the resulting changes in atmospheric chemistry testing various hypotheses of water uptake by plants in the rooting zone; following the main assumption that roots maximize water uptake, i.e. they adsorb water at different soil depths depending on the water availability, we improve the dry deposition scheme within the chemistry transport model CHIMERE. Results highlight how dry deposition significantly declines when soil moisture is used to regulate the stomatal opening, mainly in the semi-arid environments: in particular, over Europe the amount of ozone removed by dry deposition in one year without considering any soil water limitation to stomatal conductance is about 8.5 Tg O3, while using a dynamic layer that ensures plants to maximize the water uptake from soil, we found a reduction of about 10 % in the amount of ozone removed by dry deposition (~ 7.7 Tg O3). Despite dry deposition occurs from top of canopy to ground level, it affects the concentration of gases remaining into the lower atmosphere with a significant impact on ozone concentration (up to 4 ppb) extending from the surface to the upper troposphere (up to 650 hPa). Our results shed light on the importance of improving the parameterizations of processes occurring at plant level (i.e. from the soil to the canopy) as they have significant implications on concentration of gases in the lower troposphere.


2008 ◽  
Vol 12 (3) ◽  
pp. 913-932 ◽  
Author(s):  
S. J. Schymanski ◽  
M. Sivapalan ◽  
M. L. Roderick ◽  
J. Beringer ◽  
L. B. Hutley

Abstract. The main processes determining soil moisture dynamics are infiltration, percolation, evaporation and root water uptake. Modelling soil moisture dynamics therefore requires an interdisciplinary approach that links hydrological, atmospheric and biological processes. Previous approaches treat either root water uptake rates or root distributions and transpiration rates as given, and calculate the soil moisture dynamics based on the theory of flow in unsaturated media. The present study introduces a different approach to linking soil water and vegetation dynamics, based on vegetation optimality. Assuming that plants have evolved mechanisms that minimise costs related to the maintenance of the root system while meeting their demand for water, we develop a model that dynamically adjusts the vertical root distribution in the soil profile to meet this objective. The model was used to compute the soil moisture dynamics, root water uptake and fine root respiration in a tropical savanna over 12 months, and the results were compared with observations at the site and with a model based on a fixed root distribution. The optimality-based model reproduced the main features of the observations such as a shift of roots from the shallow soil in the wet season to the deeper soil in the dry season and substantial root water uptake during the dry season. At the same time, simulated fine root respiration rates never exceeded the upper envelope determined by the observed soil respiration. The model based on a fixed root distribution, in contrast, failed to explain the magnitude of water use during parts of the dry season and largely over-estimated root respiration rates. The observed surface soil moisture dynamics were also better reproduced by the optimality-based model than the model based on a prescribed root distribution. The optimality-based approach has the potential to reduce the number of unknowns in a model (e.g. the vertical root distribution), which makes it a valuable alternative to more empirically-based approaches, especially for simulating possible responses to environmental change.


2020 ◽  
Author(s):  
Stefan Seeger ◽  
Michael Rinderer ◽  
Markus Weiler

<p>In the face of global climate change, a well-informed knowledge of plant physiologic key parameters is essential to predict the behavior of ecosystems in a changing environment. Many of these parameters may be determined with lab or pot experiments, but it could prove problematic to transfer results obtained in a such experiments with small trees to fully grown trees. Therefore, new approaches to determine relevant parameters for mature trees are still required. Regarding plant water uptake, parameters related to fine root distribution (maximum depth, depth distribution and rhizosphere radius) and parameters describing the physiological limits of root water uptake are important, but usually hard or costly to assess for fully grown trees.  In-situ isotope probes (Volkmann et al. 2016a  & 2016b) are a promising recent development that offer new possibilities for the investigation of plant water uptake and associated physiological parameters.</p><p>In this study we used in-situ stable water isotope probes in soil (six depths from 10 to 100 cm) and in tree xylem of mature (140 years) European beech trees (three heights between 0 and 8 m). With those probes, we monitored soil and xylem isotope signatures after an isotopically labeled (Deutrium-Excess = 100 ‰) irrigation pulse equivalent to 150 mm of precipitation and foursubsequent natural precipitation events over a period of twelve weeks with a high temporal resolution (six or more measurements per probe per day). Those measurements were complemented with measurements of soil moisture and sap flow dynamics. We interpolated our measured soil isotope and soil moisture data in order to obtain spatially and temporally continuous data for those soil parameters. Then we used this data as an input to the Feddes-Jarvis plant water uptake model, in order to predict the isotopic signature of plant water uptake at daily time steps. With the help of our observed isotopic signatures, we were able to directly constrain the critical water potential parameter of the Feddes model as well as the underlying fine root distribution. Furthermore, the observed dampening of the breakthrough curve of our Deuterium-labeling pulse allowed us to infer information on the rhizosphere  radius and water transport velocities in the fine roots and stem between the points of root water uptake and the eight meter stem height.</p><p>With our field experiment we showed that in-situ isotope measurements in soil profiles and in tree xylem sap can help to constrain plant water uptake modelling parameters. Future experiments might use this approach to scrutinize lab-scale derived hypothesizes regarding tree water uptake and to investigate the temporal and spatial dynamics of root water uptake in the field.</p><p> </p><p><em>Volkmann, T. H., Haberer, K., Gessler, A., & Weiler, M. (2016a). High‐resolution isotope measurements resolve rapid ecohydrological dynamics at the soil–plant interface. New Phytologist, 210(3), 839-849. </em></p><p><em>Volkmann, T. H., Kühnhammer, K., Herbstritt, B., Gessler, A., & Weiler, M. (2016b). A method for in situ monitoring of the isotope composition of tree xylem water using laser spectroscopy. Plant, cell & environment, 39(9), 2055-2063. </em></p><p><em>Jarvis, N. J. (1989). A simple empirical model of root water uptake. Journal of Hydrology, 107(1-4), 57-72. </em></p>


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1707
Author(s):  
Xiaojun Shen ◽  
Jing Liang ◽  
Ketema Zeleke ◽  
Yueping Liang ◽  
Guangshuai Wang ◽  
...  

Collecting accurate real-time soil moisture data in crop root zones is the foundation of automated precision irrigation systems. Soil moisture sensors (SMSs) have been used to monitor soil water content (SWC) in crop fields for a long time; however, there is no generally accepted guideline for determining optimal number and placement of soil moisture sensors in the soil profile. In order to study adequate positioning for the installation of soil moisture sensors in the soil profile, six years of field experiments were carried out in North China Plain (NCP). Soil water content was measured using the gravimetric method every 7 to 10 days during six growing seasons of winter wheat (Triticum aestivum L), and root distribution was measured using a soil core method during the key periods of winter wheat growth. The results from the experimental data analysis show that SWC at different depths had a high linear correlation. In addition, the values of correlation coefficients decreased with increasing soil depth; the coefficient of variation (CV) of SWC was higher in the surface layers than in the deeper layers (depths were 0–40 cm, 0–60 cm, and 0–100 cm during the early, middle, and last stages of winter wheat, respectively); wheat roots were mainly distributed in the surface layer. According to an analysis of CV for SWC and root distribution, the depths of planned wetted layers were determined to be 0–40 cm, 0–60 cm, and 0–100 cm during the sowing to reviving stages (the early stage of winter wheat), returning green and jointing stages (the middle stage of winter wheat), and heading to maturity stage (the last stage of winter wheat), respectively. The correlation and R-cluster analyses of SWC at different layers in the soil profile showed that SMSs should be installed 10 and 30 cm below the soil surface during the winter wheat growing season. The linear regression model can be built using SWC at depths of 10 and 30 cm to predict total average SWC in the soil profile. The results of validation showed that the developed model provided reliable estimates of total average SWC in the planned wetted layer. In brief, this study suggests that suitable positioning of soil moisture sensors is at depths of 10 and 30 cm below the soil surface.


Author(s):  
Anton Hidayat Hidayat ◽  
Nasrullah ◽  
Darma Putra ◽  
Ramiati

The ideal soil temperature and humidity in red chilli pepper seedling is very important in the growth of the plant. The cultivation of red chili plants in greenhouses is very good, because the environment in greenhouses can be manipulated according to the needs of the plants. The ideal temperature for red chili breeding is 25oC to 27oC, for soil moisture drainage and aeration must be maintained during growth. Red pepper plants can grow well in moisture 50% to 70%, irregular soil moisture can cause rooting disease and root decay in plants. Cultivation of plants in greenhouses can maintain the nursery process, because the plants can be cultivated in accordance with the Operational Procedure Standards (SOP). Generally the farmers in breeding of red pepper is done in a trational way. In the process of temperature control and soil moisture using fuzzy method where the system can work automatically, which can facilitate the work of farmers in seeding plants from uncertain environmental conditions outside. In the measurements that have been done can be taken conclusion percentage error mean temperature from setpoint which have been set at the time in the morning equal to 2,48%, at noon equal to 9,79% and at night equal to 1,93%. Then each addition of 1 second watering, soil humidity rise up to 0.067%.


2021 ◽  
Author(s):  
Zhiqing Lan ◽  
Han Chen ◽  
Han Li ◽  
Jinhui Jeanne Huang ◽  
Edward McBean ◽  
...  

<p>The scarcity of water resources is an important issue in urbanization. Urban forest land water consumption accounts for a large part of urban water resources, the study of water uptake patterns in urban forest area is crucial for urban water saving and precision irrigation, but no identified research have investigated water uptake patterns in urban forest area until now. In this study, we measured the deuterium isotope ratio (δD) and the oxygen isotope ratio (δ<sup>18</sup>O) of precipitation, irrigation water, xylem water and soil water sources in a locust tree forest in Jinnan District of Tianjin City, China across 2019-2020. Water sources proportion in the root zone area of different growing seasons were obtained by IsoSource model, MixSIR model and SIAR model. Results show that there is a significant difference in soil moisture content between different stand age locust trees in time and depth variation. The trend of soil moisture of different stand ages of locust in time sequence intend to increase first and then decrease, the most significantly change of soil water content happened in shallow layer (0~40 cm). The change in vertical depth is about the same. The soil profile of 0-200 cm was discretized into three layers. The shallow layer (0~40 cm) soil water δD and δ<sup>18</sup>O fluctuated widely and decreased with the depth increased. This study revealed the dynamic replenishment of the root zone water in urban forest land, and provides insights into reforestation and water management in urban area.</p>


2008 ◽  
Vol 5 (1) ◽  
pp. 51-94 ◽  
Author(s):  
S. J. Schymanski ◽  
M. Sivapalan ◽  
M. L. Roderick ◽  
J. Beringer ◽  
L. B. Hutley

Abstract. The main processes determining soil moisture dynamics are infiltration, percolation, evaporation and root water uptake. Modelling soil moisture dynamics therefore requires an interdisciplinary approach that links hydrological, atmospheric and biological processes. Previous approaches treat either root water uptake rates or root distributions and transpiration rates as given, and calculate the soil moisture dynamics based on the theory of flow in unsaturated media. The present study introduces a different approach to linking soil water and vegetation dynamics, based on vegetation optimality. Assuming that plants have evolved mechanisms that minimise costs related to the maintenance of the root system while meeting their demand for water, we develop a model that dynamically adjusts the vertical root distribution in the soil profile to meet this objective. The model was used to compute the soil moisture dynamics, root water uptake and fine root respiration in a tropical savanna over 12 months, and the results were compared with observations at the site and with a model based on a fixed root distribution. The optimality-based model reproduced the main features of the observations such as a shift of roots from the shallow soil in the wet season to the deeper soil in the dry season and substantial root water uptake during the dry season. At the same time, simulated fine root respiration rates never exceeded the upper envelope determined by the observed soil respiration. The model based on a fixed root distribution, in contrast, failed to explain the magnitude of water use during parts of the dry season and largely over-estimated root respiration rates. The observed surface soil moisture dynamics were also better reproduced by the optimality-based model than the model based on a prescribed root distribution. The optimality-based approach has the potential to reduce the number of unknowns in a model (e.g. the vertical root distribution), which makes it a valuable alternative to more empirically-based approaches, especially for simulating possible responses to environmental change.


Sign in / Sign up

Export Citation Format

Share Document