Implications of crop residue management and conservation tillage on soil organic matter

1996 ◽  
Vol 76 (4) ◽  
pp. 627-634 ◽  
Author(s):  
J. F. Dormaar ◽  
J. M. Carefoot

Under natural grassland or native prairie, aboveground residue or surface litter modifies the microenvironment. It promotes water infiltration and, by insulating the soil surface, moderates soil temperatures and limits evaporation. Root mass decomposes and transforms within the conditions created by surface litter. Together with root exudates, this below-ground residue or subsurface litter reacts with soil minerals to form aggregates, lower bulk density and increase water-holding capacity. Bringing such soils under cultivation leads to lower soil organic matter content, thereby increasing bulk density. The role of surface litter becomes even more important, as it affects wind and water erosion, reduces the impact of raindrops, prevents crusting, protects the soil from drying by sublimation, and captures snow. Management of crop residues depends on the role of the residue. A distinction must be made between above- and below-ground residues: their roles are distinctly different. Aboveground crop residue protects the soil and creates the conditions for below-ground residue to decompose and transform. These decomposition products, in turn, create favourable soil structure for plant growth. Research is needed on the effect of repeated harvesting of "excess" aboveground residues. Key words: Labile organic matter, resilience, resistance, surface litter, subsurface litter

2019 ◽  
Vol 11 (3) ◽  
pp. 712-717
Author(s):  
Renu Kumari ◽  
Ranbir Singh ◽  
Neeraj Kumar

Soil is a very important factor of the plant growth and crop yield. But   now a days, very small area of the soil can actually be fertile for agriculture, and if we manage improperly it can be depleted. So the big problem, how we manage and increase the fertility of soil. It has been reported that soil organic carbon and soil matter is the most important indicator of soil quality and soil health. It is also beneficial for agricultural sustainability. In this review, we summarized how crop residue management affects soil organic carbon (SOC), soil organic matter (SOM), soil aggregation, effect of residue burning and crop productivity in different cropping system. Proper use of crop residue can increase or maintain the physical and chemical properties of SOM and improve the quality of soil. Manure or crop residue alone may not be adequate to maintain SOC levels. Knowledge and assessment of changes (positive or negative) in SOC and SOM with time is still needed to evaluate the impact of different management practices.


Author(s):  
Vito Ferro ◽  
Vincenzo Bagarello

Field plots are often used to obtain experimental data (soil loss values corresponding to different climate, soil, topographic, crop, and management conditions) for predicting and evaluating soil erosion and sediment yield. Plots are used to study physical phenomena affecting soil detachment and transport, and their sizes are determined according to the experimental objectives and the type of data to be obtained. Studies on interrill erosion due to rainfall impact and overland flow need small plot width (2–3 m) and length (< 10 m), while studies on rill erosion require plot lengths greater than 6–13 m. Sites must be selected to represent the range of uniform slopes prevailing in the farming area under consideration. Plots equipped to study interrill and rill erosion, like those used for developing the Universal Soil Loss Equation (USLE), measure erosion from the top of a slope where runoff begins; they must be wide enough to minimize the edge or border effects and long enough to develop downslope rills. Experimental stations generally include bounded runoff plots of known rea, slope steepness, slope length, and soil type, from which both runoff and soil loss can be monitored. Once the boundaries defining the plot area are fixed, a collecting equipment must be used to catch the plot runoff. A conveyance system (H-flume or pipe) carries total runoff to a unit sampling the sediment and a storage system, such as a sequence of tanks, in which sediments are accumulated. Simple methods have been developed for estimating the mean sediment concentration of all runoff stored in a tank by using the vertical concentration profile measured on a side of the tank. When a large number of plots are equipped, the sampling of suspension and consequent oven-drying in the laboratory are highly time-consuming. For this purpose, a sampler that can extract a column of suspension, extending from the free surface to the bottom of the tank, can be used. For large plots, or where runoff volumes are high, a divisor that splits the flow into equal parts and passes one part in a storage tank as a sample can be used. Examples of these devices include the Geib multislot divisor and the Coshocton wheel. Specific equipment and procedures must be employed to detect the soil removed by rill and gully erosion. Because most of the soil organic matter is found close to the soil surface, erosion significantly decreases soil organic matter content. Several studies have demonstrated that the soil removed by erosion is 1.3–5 times richer in organic matter than the remaining soil. Soil organic matter facilitates the formation of soil aggregates, increases soil porosity, and improves soil structure, facilitating water infiltration. The removal of organic matter content can influence soil infiltration, soil structure, and soil erodibility.


2018 ◽  
Author(s):  
Yu Liu ◽  
Zeng Cui ◽  
Ze Huang ◽  
Hai-Tao Miao ◽  
Gao-Lin Wu

Abstract. Litter crusts are integral components of the water budget in terrestrial ecosystems, especially in arid areas. This innovative study is to quantify the ecohydrological effectiveness of litter crusts in desert ecosystems. We focus on the positive effects of litter crusts on soil water holding capacity and water interception capacity compared with biocrusts. Litter crusts significantly increased soil organic matter, which was 2.4 times the content in biocrusts and 3.84 times the content in bare sandy lands. Higher organic matter content resulted in increased soil porosity and decreased soil bulk density. Meanwhile, soil organic matter can help to maintain maximum infiltration rates. Litter crusts significantly increased the water infiltration rate under high water supply. Our results suggested that litter crusts significantly improve soil properties, thereby influencing hydrological processes. Litter crusts play an important role in improving hydrological effectiveness and provide a microhabitat conducive to vegetation restoration in dry sandy ecosystem.


2020 ◽  
Author(s):  
◽  
Kamilla Skaalsveen

No-tillage is a non-inversion farming practice that is becoming more widely used in farming and often considered to enhance soil functions, by increasing soil organic matter levels and thereby improving soil structure. Knowledge about the effects of different management practices on separate soil functions is important to understand potential trade-offs between them. Studies have shown that no-tillage affects soil functions of water purification and water retention and can reduce erosion rates and inputs from agriculture to water bodies, however evidence from north western European countries is still limited. Alongside this gap in evidence about the physical impacts of no-tillage, knowledge about how farmers share knowledge about no-tillage, a knowledge intensive practice, and the role of farmer networks is still growing. This paper presents results from interdisciplinary (PhD) research which measured the effect of no-tillage on water related soil functions in a UK case study and analysed the distribution of no-tillage knowledge through farmer networks. The field-scale monitoring compares two neighbouring farms (one using conventional ploughing and the other no-tillage) with similar soil and topographic characteristics to assess spatial and temporal changes in soil and water variables. The 2-year monitoring included nutrient analysis of surface and sub-surface soil samples, bulk density, soil moisture, infiltration capacity, surface runoff and analysis of Dissolved Reactive Phosphorous (DRP), Total Phosphorous (TP) and Suspended Solids (SS) in downstream waters. Farmers’ networks were mapped using Social Network Analysis (SNA) to reveal the nature and extent of their knowledge exchange about no-tillage. This was complemented by semi-structured interviews with farmers to understand their reasons for implementing no-tillage. This paper presents findings from both aspects of this research. The soil and water data show varying impacts of no-tillage on soil functions and water quality with different soil types and climate. The no-tillage fields had higher bulk density and soil organic matter content and thereby increasing the soil moisture levels, but the free-draining porous limestone was providing greater benefits under no-tillage in this study compared with the limerich loamy soil with high silt and clay content. The SNA suggests that farmers’ networks expanded with the conversion to no-tillage and that their main influencers were other more experienced no-tillage farmers. In this respect I question the role of external organisations in supporting no-tillage adoption. The research offers a significant new contribution to the field as it assesses the effects of no-tillage on water purification and retention functions of the soil, and at the same time contributes to understanding the dynamics of farmer networks and the link to implementation.


2020 ◽  
Vol 38 (1) ◽  
pp. 57
Author(s):  
Salvador Lozano-Trejo ◽  
Jaime Olazo Aquino ◽  
María Isabel Pérez-León ◽  
Ernesto Castañeda-Hidalgo ◽  
Gustavo Omar Díaz-Zorrilla ◽  
...  

Changes in the land use of a basin area affects the infiltration and surface water runoff directly, altering the balance of the hydrological cycle. Therefore, estimating parameters of water infiltration and runoff for each type of land use and vegetation (USV) is fundamental to differentiate the impact caused by a change of land use over the hydrical balance of a given area. The objective of this study was to estimate cumulative inf iltration (F), basic inf iltration rate (Ti), constant inf iltration rate (fc) and inf iltration decay coeff icient (k); as well as inf iltration and runoff coefficients in mountainous cloud forest (BMM), (SMSPC), pine-oak forest (BPQ), oak forest (BQ), induced grassland (PI), pine forest (BP), agricultural land in use (TC) and fallowed agricultural land (TCD). Thirty-eight simulated rain experiments were carried out at an average intensity of 100 mm h-1 with a hand-portable single nozzle rainfall simulator. The exponential model was employed to estimate fc and k and the Horton semi-empirical model to estimate Ti and F. The analysis of variance was performed by the generalized linear model (GML) to evaluate the effects of USV and texture type, and the analysis of covariance was employed to determine the effects of slope, mulch depth, organic matter % of total variability content, sand, mud and clay content, and bulk density. The exponential model fitted more than 80% of total variability (R2) at all USV. Agricultural land in use and TCD showed the lowest F and Ti and the highest k (P < 0.001), BMM exhibited the highest infiltration capacity (F) and lowest decay rate (k). The bulk density of the soil, and content of mud and organic matter were the variables positively associated to infiltration (P < 0.01).


Author(s):  
Biboss Maharjan ◽  
Anon Chaulagain ◽  
Parikrama Sapkota ◽  
Dhurva P. Gauchan ◽  
Janardan Lamichanne

 The aim of this study was to investigate the response of soil physical and chemical properties during the transition from conventional to organic farming system. Soil samples were collected from five different farms: “Hasera organic farm” under 10 years of organic farming, “Everything organic nursery” under 5 years of organic farming, “Grameen Krishi” under 3 years of transition from conventional to organic, “Gautamshree farm” under 1 years of transition from conventional to organic and “Kuntabeshi farm” under IPM practice as reference. Soil bulk density, moisture content, texture, NPK, CEC and soil organic matter was evaluated in soil samples collected at 0-15 cm. Soil organic matter (5.45%) was highest in Hasera farm, whereas lowest bulk density (1.02gcm-3) was also in Hasera farm. Lowest soil organic matter content was found in Gautamshree farm. Soils of all farms were under loam texture. Soil macronutrients were highest in Grameen Krishi farm. The overall pH value of all soil samples was slightly acidic to acidic.Kathmandu University Journal of Science, Engineering and TechnologyVol. 13, No. 1, 2017, Page: 76-84


Sign in / Sign up

Export Citation Format

Share Document