Granular soil structure indicates reclamation of degraded to productive soils: A case study in southeast Spain

2012 ◽  
Vol 92 (1) ◽  
pp. 243-251 ◽  
Author(s):  
J. M. Arocena ◽  
J. M. van Mourik ◽  
A. Faz Cano

Arocena, J. M., van Mourik, J. M. and Faz Cano, A. 2012. Granular soil structure indicates reclamation of degraded to productive soils: A case study in southeast Spain. Can. J. Soil Sci. 92: 243–251. Accelerated conversion of degraded landscapes in mining areas to productive ecosystems requires stimulation of soil formation. The evolution in microstructure and changes to chemical properties in metal mine wastes 5 yr after amendments with pig manure, sewage sludge and marble waste is reported. Mine wastes had <1% organic carbon, <0.05% total nitrogen, pH∼2.0, electrical conductivity up to 20 dS m−1and high concentrations of metals such as 22000 mg zinc kg−1and 7000 mg lead kg−1. After 5 yr, one time amendment increased total carbon (g kg−1) from 1.4 (control) to 5.6 (marble waste +sewage sludge) to 8.3 (marble waste+pig manure). Soil pH in amended plots was 6.0 compared with 2.8 in controls. Micromorphological characteristics clearly showed that primary and secondary calcite serve as active sorption sites for organic matter. These calcitic zones were areas conducive to root growth. Soil microstructure in amended mine wastes was dominantly granular, resulting from activities of soil organisms such as fungi and enchytraeds. Results suggest organic matter can be effectively enriched in mine waste deposits through simultaneous additions of pig manure, sewage sludge and calcite. Soil amendments promoting formation of granular structure can accelerate establishment of productive landscapes in degraded mine sites.

2020 ◽  
pp. 1-10
Author(s):  
Clara Roa García ◽  
Sandra Brown ◽  
Maja Krzic ◽  
Les Lavkulich ◽  
María Cecilia Roa-García

Differences in soil water retention (SWR) characteristics between soil types and the factors driving those differences provide important information for land management, particularly in regions such as the Colombian Andes, which have limited water-storage infrastructure and where soils provide plant-available water and other ecosystem services. The objective of this study was to explore relationships between SWR and physical, chemical, and mineralogical properties of Andisols and Inceptisols through a case study of two watersheds in the Colombian Andes. This study identified a complex relationship between total carbon (TC), short-range order (SRO) minerals, and SWR. Both soil types had high SWR, with volumetric water content at permanent wilting point between 39% and 53%. Principal component analysis showed association of SWR with TC, SRO minerals, and % clay in both soil types. The Andisols of this study were coarse textured, allophanic (rich in allophane and imogolite — up to 17% in the B horizon), and with up to 15% TC in the A horizon. In contrast, the Inceptisols were fine textured (>30% clay) and higher in ferrihydrite than the Andisols. The formation of organo-metallic complexes was observed in A horizons; however, TC was lower under pasture than forest in both soil types. The addition of organic matter to soils with SRO minerals, such as the soils of this study, may foster the formation of organo-metallic complexes, stabilize soil C, and enhance SWR. Consequently, both study sites may benefit from management practices that increase soil organic matter.


Radiocarbon ◽  
1996 ◽  
Vol 38 (2) ◽  
pp. 209-217 ◽  
Author(s):  
Randye L. Rutberg ◽  
David S. Schimel ◽  
Irena Hajdas ◽  
Wallace S. Broecker

We compared four adjacent soil plots in an effort to determine the effect of land use on soil carbon storage. The plots were located at the High Plains Agricultural Research Laboratory near Sidney, Nebraska. We measured 14C, total carbon, total nitrogen and 137Ce to determine the size and turnover times of rapid and stable soil organic matter (SOM) pools, and their relation to land-use practices. Results were consistent with the model produced by Harrison, Broecker and Bonani (1993a) in that the 14C surface soil data fell on the time trend plots of world 14C surface soil data, indicating that the natural sod and non-tilled plots had a rapidly turning over SOM pool, comprising ca. 75% of surface soil carbon, and the tilled plots had a rapidly turning over SOM pool, comprising only 50% of surface soil carbon.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Luchien Luning ◽  
Paul Roeleveld ◽  
Victor W.M. Claessen

In recent years new technologies have been developed to improve the biological degradation of sewage sludge by anaerobic digestion. The paper describes the results of a demonstration of ultrasonic disintegration on the Dutch Wastewater Treatment Plant (WWTP) Land van Cuijk. The effect on the degradation of organic matter is presented, together with the effect on the dewatering characteristics. Recommendations are presented for establishing research conditions in which the effect of sludge disintegration can be determined in a more direct way that is less sensitive to changing conditions in the operation of the WWTP. These recommendations have been implemented in the ongoing research in the Netherlands supported by the National Institute for wastewater research (STOWA).


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3411
Author(s):  
Clara Fernando-Foncillas ◽  
Maria M. Estevez ◽  
Hinrich Uellendahl ◽  
Cristiano Varrone

Wastewater and sewage sludge contain organic matter that can be valorized through conversion into energy and/or green chemicals. Moreover, resource recovery from these wastes has become the new focus of wastewater management, to develop more sustainable processes in a circular economy approach. The aim of this review was to analyze current sewage sludge management systems in Scandinavia with respect to resource recovery, in combination with other organic wastes. As anaerobic digestion (AD) was found to be the common sludge treatment approach in Scandinavia, different available organic municipal and industrial wastes were identified and compared, to evaluate the potential for expanding the resource recovery by anaerobic co-digestion. Additionally, a full-scale case study of co-digestion, as strategy for optimization of the anaerobic digestion treatment, was presented for each country, together with advanced biorefinery approaches to wastewater treatment and resource recovery.


Sign in / Sign up

Export Citation Format

Share Document