THE EFFECTS OF AMMONIUM NITRATE AND UREA ON THE RELEASE OF NON-EXCHANGEABLE POTASSIUM BY EIGHT EASTERN PRAIRIE SOILS DURING CONTINUOUS CROPPING IN THE GREENHOUSE

1974 ◽  
Vol 54 (3) ◽  
pp. 255-263 ◽  
Author(s):  
L. D. BAILEY

Continuous cropping of eight Manitoba soils to alfalfa in the greenhouse decreased the exchangeable potassium of the soils to low equilibrium levels. Non-exchangeable potassium was removed from the soils by the alfalfa. The rate of decrease of exchangeable potassium and the quantity of non-exchangeable potassium mobilized was significantly influenced by the addition of ammonium nitrate or urea to the soils. However, there were no significant differences between the soils treated with ammonium nitrate and those treated with urea. There was considerable variation among soils in the rate of decrease of exchangeable potassium and the quantity of non-exchangeable potassium mobilized. The total yield of soil potassium was related to the initial exchangeable potassium levels of the soils. Addition of NH4NO3 increased the percentage of total N in the plant material harvested prior to the eighth harvest. After this eighth harvest the added nitrogen had no effect on the nitrogen content of the harvested material. In general, fine-textured soils yielded more plant material and total potassium, and maintained a higher level of exchangeable potassium than coarse-textured soils.

1978 ◽  
Vol 29 (6) ◽  
pp. 1247 ◽  
Author(s):  
AM Graley

Soil potassium, measured by simple chemical extractions, was compared with potassium availability assessed during continuous cropping of perennial ryegrass in pots, on 12 surface soils representing four Tasmanian soil groups. For three soil groups with mainly kaolinitic clay, potassium uptake by the plant (the main measure of potassium availability) was related to a decrease in the potassium extracted from the soil by boiling lM nitric acid during the experiment. The decrease in soil potassium extracted by repeated nitric acid digestions averaged 95% of the total potassium uptake. However, a large and rapid uptake from the illitic yellow podzolics was only partly assessable by chemical extractions. For all soils, much of the large amount of potassium taken up early was stored in the plant roots and transferred to the tops much later. Plant yields were related to exchangeable potassium only within soil groups; over most soils they were related to nitric acid-soluble potassium. Yield responses to added potassium usually occurred when exchangeable potassium became depleted to a critical level of 0.2–0.25 m-equiv./100 g or nitric acid-soluble potassium to 0.4–0.7 m-equiv./100 g. The critical level of potassium in ryegrass tops was 0.5–0.8%. On average nearly two-thirds of the potassium released from soils came from exchangeable sources. Potassium initially non-exchangeable was differentiated into quickly released 'intermediate' potassium and slowly released 'constant rate' potassium. Release of intermediate potassium predominated from the yellow podzolics and from one non-calcic brown soil with much randomly interstratified material in its clay.


1981 ◽  
Vol 21 (112) ◽  
pp. 543 ◽  
Author(s):  
AM Graley

Two forms of depletion cropping were examined. Perennial ryegrass was continuously cropped on two contrasting soils in pots. Simultaneously, repeated crops of ryegrass, subterranean clover, and marrow-stem kale were grown by a modified system of depletion cropping in which the whole plant was harvested and the soil sampled before being repotted for further crops. Fractions of soil potassium determined by chemical extractions were compared with the results from depletion cropping. Although the modified system needed added attention, particularly between crops, the available potassium was well exploited because of the thorough mixing of the soil. A further benefit was that the depletion of potassium in soils and plants could be followed progressively. Different root systems of the plant species greatly influenced the total potassium uptake. Reserves of initially non-exchangeable potassium contributed much to the uptake while decrease in soil potassium measured by repeated nitric acid extractions ranged from 63 to 80% of the uptake. Ryegrass with its dense root system was able to take up more non-exchangeable potassium from a yellow podzolic soil than clover and kale.


1964 ◽  
Vol 44 (3) ◽  
pp. 280-285 ◽  
Author(s):  
J. J. Jasmin ◽  
R. Tourchot ◽  
H. B. Heeney

Repeated application of fertilizer over a 5-year period (1957–61) on organic soil producing potatoes resulted in large increases in exchangeable potassium and in moderate increases in acid-soluble plus absorbed phosphorus. Where potatoes were grown without application of fertilizer the exchangeable potassium decreased rapidly but the available phosphorus remained at a constant level.Fertilizer treatments influenced yields only in 1961, and per cent total N and P in leaf tissue only in 1961 and 1958 respectively. However, in all years the per cent total potassium in leaf tissue was in direct relation to rate of fertilizer applied and the percentage of Ca and Mg generally decreased as per cent potassium increased. The specific gravity and the general boiling quality of the tubers were adversely affected by heavy fertilization, but the chipping quality, the flavor, and the color of the flesh were not affected by soil fertility differences.


1957 ◽  
Vol 37 (1) ◽  
pp. 1-10 ◽  
Author(s):  
J. A. Smith ◽  
B. C. Matthews

Eighteen Ontario soils were ranked according to their capacity to supply potassium from non-exchangeable forms to eight successive crops of alfalfa. This capacity was found to be closely related to the percentage of clay in the soils. Potassium content of the alfalfa and total uptake of potassium were highly correlated with both exchangeable soil potassium and release of potassium from non-exchangeable forms. Exchangeable potassium levels below 100 lb. per acre gave low yields and potassium content of the crop. Excessively high exchangeable potassium levels resulted in luxury consumption of potassium by the crop or in fixation by the soil. In soils at or near their equilibrium exchangeable potassium levels, i.e., not heavily fertilized, there was a close relationship between potassium-supplying power and the exchangeable potassium content measured either before cropping commenced or at the end of the cropping period.


Soil Research ◽  
1972 ◽  
Vol 10 (1) ◽  
pp. 95 ◽  
Author(s):  
IF Fergus ◽  
AE Martin ◽  
IP Little ◽  
KP Haydock

Setaria (Setaria sphacelata cv. Nandi) was grown in 10 surface soils, of contrasting properties, in pots until (after repeated harvesting of tops) plant growth virtually ceased. Uptake of potassium by tops and roots was correlated with change in exchangeable potassium during cropping, initial exchangeable potassium, and with quantities of potassium predicted from the immediate Q/I relations of the soils. Some initially non-exchangeable potassium was absorbed from seven of the soils by the plants, such that these soil quantity parameters (which were statistically equivalent) predicted two-thirds of the total potassium uptake averaged over all soils. Potassium uptake was also correlated with soil potassium soluble in constant-boiling hydrochloric acid, and with potassium extracted by a cation exchange resin (both of which predicted about twice the plant absorption). For six of the soils, uptake of initially non-exchangeable potassium was correlated with the quantity of total potassium present in each pot in the 1 0 . 1 pm clay fraction. The intensity of soil potassium (measured in dilute calcium chloride solution from the immediate Q/I relation) was reduced on all soils by exhaustive cropping to a mean value for the equilibrium activity ratio (AR0) of 4.7 10-4 mole1/2 L.-1/2 (�G = -4500 cal equiv.-1); it was suggested that the observed variations in this value were unlikely to prohibit its use for practical soil testing, except for the prediction of the quantity parameter for those soils for which the form of the isotherm is altered by cropping. A tentative value for the potential of soil potassium at which setaria has an adequate average potassium concentration in its tops was - 3600 cal equiv.-1 (AR0 2.1 x 10-4 mole1/2 L.-1/2).


2019 ◽  

<p>In order to study the chemical parameters of the soil after sub-irrigation with wastewater, a system was installed in one of the greenhouses of the Agricultural University of Athens. Wastewater was applied subsurface into the soil mass of the pots were used. Three treatments were used: Untreated wastewater (U), Treated wastewater (T) and tap water (W) as control. Two different types were used: Soil (a) characterized as Sandy loam and soil (b) characterized as Loamy sand. Moreover, in order to investigate the change of total Nitrogen and organic matter concentrations at the point where the emitter was placed, the soil mass was divided into two zones. The upper (zone I) and the lower one (zone II). The total nitrogen content, ammonia nitrogen (NH4-N), nitrogen nitrate (NO3-N) and the percentage of organic matter, were determined in the soil samples. Statistically significant differences (p &lt;0, 05) were observed in the organic matter and the total N%, only for soil (b). For soil (a), organic matter percentage was increased in zone (I) (irrigation with treated wastewater at 20 cm depth). For soil (b), total N% was increased in zone (I), while nitrate and ammonium were increased in zone (II) (irrigation with untreated wastewater at 20 cm depth).</p>


1961 ◽  
Vol 33 (1) ◽  
pp. 159-168
Author(s):  
Pentti Hänninen ◽  
Armi Kaila

Calcium nitrate and ammonium nitrate limestone (»Oulunsalpietari») were compared as the nitrogen fertilizer for oats in 15 field trials and for barley in one trial. The trials were carried out in summers 1959 and 1960 in various places in Finland. The split plot technique was employed in order to reduce the variation as much as possible. In 1959 the amounts of nitrogen applied as these two fertilizers to the corresponding halves of the plots were 25 and 50 kg/ha. In 1960 also higher applications were used: 75 and 100 kg/ha of N. In three trials these fertilizers were compared both as a surface dressing and worked in. Visual observations suggested about 5—6 weeks after sowing a darker green colour in the stands treated with calcium nitrate as compared with the other half treated with ammonium nitrate limestone. These differences later disappeared. In some trials a higher nitrogen content of the plants from the calcium nitrate stands could be demonstrated during this period. The uptake of nitrogen by plants was regularly followed throughout the growing period. Owing to the large variation, usually, no statistically significant difference between the effect of the fertilizers could be detected. In a few cases the superiority of calcium nitrate could be demonstrated. No differences in the ripening could be found. In most trials there was a fairly regular tendency to higher yields and higher nitrogen content in the grain and straw produced by calcium nitrate. Yet, only in a few cases were the differences statistically significant at the five per cent level. Thus, it was concluded that on the basis of the results of these trials ammonium nitrate limestone and calcium nitrate may be considered practically equal as nitrogen fertilizers for oats. There was no difference in the yields of barley produced by these two fertilizers, but the nitrogen content of grains was significantly lower with ammonium nitrate limestone than with calcium nitrate. This may be worth further study in connection with the production of malting barley.


Author(s):  
Mesfin Kassa ◽  
Wassie Haile ◽  
fassile kebede

Quantity-intensity characteristics are among conventional approaches for studying potassium dynamics and its availability; this was assessed to determine availability in four districts: namely, Sodo Zuria, Damot Gale, Damot Sore, and Boloso Sore at three different land use type viz., enset-coffee, crop land, and grazing land. There was water soluble, ammonium acetate, nitric acid extractable potassium, exchangeable potassium, and non-exchangeable potassium studied in soil samples, which were collected from 0-20 cm depth of each land type. The study revealed that water soluble and ammonium acetate extractable potassium concentrations ranged from 0.04 to 0.42 cmolKg-1 soils enset-coffee and grazing land use types, respectively. The study showed that exchangeable potassium constituted the highest proportion of available potassium, while the proportion of water soluble potassium was found to be the lowest. In this study, non-exchangeable potassium concentrations varied from 0.10 to 0.04cmolKg-1soils for enset-coffee, and crop and grazing land use type. Furthermore, available potassium and exchangeable potassium concentrations were positively correlated with OC(r=0.95***), cation exchange capacity, and sand and clay(r=0.98***). In addition, the K dynamics as impacted by land use types found that the highest change in exchangeable potassium (0.31cmolkg-1soils) and potential buffering capacity (1.79cmolkg-1soils) were noted in crop land use types, whereas the lowest change(1.26cmolkg-1 soils) was observed in the enset-coffee system, The varying properties, potassium status, dynamic and land use type of soils identified in the study areas provided adequate information to design soil potassium management options and further research about the soil in each site. Therefore, application of site specific soil fertility management practices and research can improve soil potassium status and quantity intensity parameters to sustain crop productive soils.


1962 ◽  
Vol 42 (2) ◽  
pp. 266-272 ◽  
Author(s):  
T. E. Barber ◽  
B. C. Matthews

The non-exchangeable potassium released by soil after equilibration with cation-exchange resin was determined by extraction of the mixture with neutral ammonium acetate at room temperature and compared with a similar extraction in the absence of resin. The difference obtained following a 2-day equilibration period was called moderately-available potassium.Simple linear regression of yield on exchangeable potassium or exchangeable plus moderately-available potassium accounted for only 16 and 27 per cent respectively of the variability in yield response of corn, wheat, oats and potatoes to potassium fertilizer in the field. Multiple linear regression of yield on exchangeable and moderately-available potassium accounted for an average of 37 per cent of the variation in crop response; but a multiple quadratic regression of Log (100-per cent yield) on exchangeable and moderately-available potassium accounted for an average of 56 per cent of the variability in Log (100-per cent yield). Multiple quadratic regression of absolute yield or per cent yield on exchangeable and moderately-available potassium accounted for 46 and 50 per cent, respectively, of the variability in crop response to potassium fertilizer.


Sign in / Sign up

Export Citation Format

Share Document