Nitrate leaching as influenced by fertilization in the Brown soil zone

1993 ◽  
Vol 73 (4) ◽  
pp. 387-397 ◽  
Author(s):  
C. A. Campbell ◽  
R. P. Zentner ◽  
F. Selles ◽  
O. O. Akinremi

The possibility of nitrates being leached into groundwater supplies from improper use of fertilizers is a concern to society. Two experiments were conducted on a loam soil in the Brown soil zone at Swift Current, Saskatchewan. In the first experiment, continuous wheat (Triticum aestivum L.), grown under various fertilizer-N management systems and with and without cereal trap strips (tall stubble, 0.4–0.6 m) to capture snow and enhance soil-moisture storage, was compared with short stubble cut at the standard height (0.15–0.2 m). Prior to seeding in spring 1991, tall stubble had stored 14.7 ha-cm of soil moisture at 0–1.2-m depth compared with 10.9 ha-cm under short-stubble treatment. Because growing-season precipitation in 1991 was much higher than normal (302 mm from 1 May to 31 My), considerable NO3-N was leached below the rooting zone of wheat (1.2 m), particularly in the tall-stubble treatment. Leaching patterns were as expected in short stubble, with major leaching occurring only at the highest N rate (125 kg ha−1), where yield and N-uptake response had levelled off. However, in tall stubble, the amount of NO3-N leached beyond the root zone under the 0 and 25 kg N ha−1 rates was similar to that under the 125 kg N ha−1 rate. This result was attributed to poor tillering obtained at low N rates, which contributed to lower evapotranspiration, thereby permitting more moisture to be leached and enhancing N mineralization. When we used a leaching model (NLEAP) to simulate our results, it gave lower estimates of NO3 leached and did not reveal the interaction of NO3-N leaching with N rates that was observed under tall stubble. The second experiment measured soil NO3-N distribution to 2.4 m under two fallow–wheat–wheat systems after a 24-yr period. One system received only N, the other, N + P fertilizer. The results corroborated those obtained under tall stubble in the first experiment: the poorly fertilized system had the most NO3-N below the root zone. The results of this study suggest that the key to reducing nitrate leaching is the adoption of proper fertilization practices, since too little fertilization may potentially be as detrimental to groundwater pollution as too much. Key words: Fertilizer N, N uptake, snow management, crop rotations, NO3 leaching

1992 ◽  
Vol 72 (4) ◽  
pp. 1091-1107 ◽  
Author(s):  
C. A. Campbell ◽  
R. P. Zentner ◽  
F. Selles ◽  
V. O. Biederbeck ◽  
A. J. Leyshon

Low commodity prices and a desire by producers on the Canadian Prairies to reduce fertilizer-N inputs have resulted in a marked increase in grain lentil (Lens culinaris medikus) production. Many producers grow lentil in rotation with spring wheat (Triticum aestivum L.). A 12-yr study carried out at Swift Current, Saskatchewan, on an Orthic Brown Chernozemic silt loam was used to compare the N economy of four monoculture wheat rotations, of various rotation lengths and levels of N fertilization, with that of a wheat–lentil (W–Len) rotation. Except for continuous wheat (Cont W) receiving mainly P fertilizer, all systems received N and P on the basis of soil tests. Neither grain nor straw yield of the associated wheat crop was influenced by lentil in the rotation; but grain- and straw-N concentrations of the wheat in W–Len were increased compared with those of monoculture wheat. Average N content of straw was greatest for grain lentil and for wheat grown on fallow (F) (14.2 kg ha−1 yr−1), followed by wheat in W–Len (11.8 kg ha−1 yr−1) and by stubble-wheat of well-fertilized monoculture systems (F–W–W and Cont W (9.5 kg ha−1 yr−1)), and lowest for Cont W receiving mainly P (5.7 kg ha−1 yr−1). Nitrate N in the root zone (0–90 cm) in spring and at harvest was greatest under F–W, followed by W–Len and then by F–W–W and Cont W receiving N and P, and lowest for Cont W receiving mainly P. In the last 5 or 6 yr of study, there was a marked increase in the amount of soil-NO3 N found in the root zone under the W–Len rotation. This was accompanied by a similar increase in the apparent net N mineralized (estimated by N balance) during the growing season. Concomitantly, there was a gradual reduction in the fertilizer-N requirement for W–Len, indicating a cumulative enhancement of the N-supplying power of the soil, although estimates of the initial potential rate of N mineralization on samples taken in 1990 did not confirm this trend. We concluded that soil-testing laboratories may need to adjust fertilizer-N recommendations downward for producers that regularly use a 2-yr W–Len rotation. There was less NO3 N leached below the root zone of W–Len, probably because there was greater synchrony of N uptake in W–Len than in Cont W (N + P); this augurs well for the use of the W–Len rotation for sustainability.Key words: Crop rotations, pulse crops, N mineralization, N fixation, N leaching


1996 ◽  
Vol 76 (3) ◽  
pp. 417-422 ◽  
Author(s):  
R. P. Zentner ◽  
C. A. Campbell ◽  
V. O. Biederbeck ◽  
F. Selles

Frequent use of summerfallow (F) to reduce the water deficit associated with cereal cropping in the Canadian prairies has resulted in severe erosion and a reduction in N-supplying power of the soils. It has been suggested that it may be feasible to use annual legumes as green manure (GM) to supply the N requirements and snow trapping to enhance soil water recharge for a subsequent cereal crop. Our objective was to test the feasibility of employing this management strategy for the Brown soil zone of southwestern Saskatchewan, by comparing yields and N uptake of hard red spring wheat (W) (Triticum aestivum L.) grown in a 3-yr rotation with Indianhead black lentil (Lens culinaris Medikus) (i.e., GM-W-W) with that obtained in a monoculture wheat system (i.e., F-W-W). Both cropping systems were operated for 6 yr, from 1988 to 1993, with all phases of the rotations present each year. The results showed that grain yields of wheat after GM were generally significantly (P < 0.05) lower than those after F, primarily because the GM reduced the reserves of available spring soil water. These results occurred despite the fact that five of the six growing seasons had above average precipitation. Yields of wheat grown on stubble were unaffected by rotation. Grain N concentration was greater for wheat grown on GM partial-fallow than for wheat grown on conventional-F in the final 3 yr of the study which was due mainly to the lower wheat yields in the GM system (i.e., yield dilution). Our results suggest that, for annual legume GM to be used successfully in the Brown soil zone, producers should seed it as early as possible (late April to early May) and terminate the growth of the legume by the first week of July, even if this means foregoing some N2 fixation. Key words: Summerfallow, soil water, grain protein, N content, soil nitrogen


1995 ◽  
Vol 75 (4) ◽  
pp. 497-505 ◽  
Author(s):  
R. C. Izaurralde ◽  
Y. Feng ◽  
J. A. Robertson ◽  
W. B. McGill ◽  
N. G. Juma ◽  
...  

The extent of nitrate leaching in cultivated soils of Alberta is unknown. We studied how long- and short-term agricultural practices influenced nitrate leaching in a cryoboreal subhumid soil-climate of north-central Alberta. The study used plots from three crop rotation-tillage studies at Breton on an Orthic Gray Luvisol, and from one at Ellerslie on an Orthic Black Chernozem. Soil samples were taken in the fall of 1993 from selected treatments as well as native forest sites in 0.3-m depth increments from 0 to 3.9 m and analyzed for NO3-N. No NO3− were found under native forest vegetation. NO3-N accumulated below 0.9-m depth of agricultural ecosystems cultivated for as long as 64 yr ranged from 0 to 67 kg N ha−1. At Breton, fallow-wheat rotation plots receiving fertilizer N and manure contained eight times more NO3-N below 0.9 m depth than non-fertilized plots. NO3-N levels in an 8-yr legume-based rotation and in continuous-barley plots were similar but greater than in continuous-forage plots. Eighty-seven percent of NO3− found under continuous barley occurred below the root zone compared with only 35% in the 8-yr rotation. At Ellerslie, NO3-N mass was related to fertilizer N and mineralization of soil organic matter. Increased efforts should be directed towards better synchronizing N release from or addition to soils with plant uptake. Evidence of greater nitrate leaching under zero tillage than under conventional warrants further confirmation. Key words: Nitrogen loss, fallow, Hordeum vulgare L., Triticum aestivum L., manure, legumes, synthetic fertilizer


1996 ◽  
Vol 76 (3) ◽  
pp. 407-412 ◽  
Author(s):  
C. A. Campbell ◽  
R. P. Zentner

Recently, there has been a marked increase in the production of oilseed crops instead of hard red spring wheat (Triticum aestivum L.) in the semiarid Brown soil zone of Saskatchewan. In this study we compare the disposition of N and soil water in two 3-yr fallow-containing crop rotations, one with flax (Linum usitatissimum L.) and wheat, and the other with only wheat. These rotations were initiated at Swift Current, Saskatchewan, in 1967 on a silt loam soil, but this assessment applied to the 1985 to 1995 period when complete soil water, NO3-N, and plant N measurements were collected. Flax grown on fallow produced less plant biomass and N uptake was lower than for wheat grown on fallow; thus, it left more NO3-N and water in the soil (especially in the 60–120 cm depth) at harvest. This residual NO3-N and water following flax rarely resulted in higher grain yields or higher grain N concentrations in the succeeding stubble-wheat crop. We hypothesized that this excess NO3-N and water may leach and thereby increase contamination of groundwater. Key words: NO3-N, soil water, N uptake, grain yield, straw yield, grain protein


2015 ◽  
Vol 95 (1) ◽  
pp. 27-36 ◽  
Author(s):  
J. J. Miller ◽  
D. S. Chanasyk

Miller, J. J. and Chanasyk, A. S. 2015. Unsaturated water flux at mid and lower slope positions within an inclined landscape of the Dark Brown soil zone in southern Alberta. Can. J. Soil Sci. 95: 27–36. Little research has quantified vertical-unsaturated water flux below the root zone for mid and lower slope positions within inclined, low-relief, and longer-slope landscapes of the Dark Brown soil zone of the Canadian prairies. We measured soil moisture (0.23–1.22 m) in the field at mid and lower slope positions in southern Alberta from May to October in 1985 and 1986. Undisturbed soil cores were taken from soil horizons and saturated hydraulic conductivity and soil moisture retention were determined in the laboratory. Vertical-unsaturated water flux below the root zone was calculated between 1.07 and 1.22 m depths below ground surface using the hydraulic gradient method. Water fluxes for the 2 yr ranged from <10−11 to 10−10 m s−1 at the mid slope position, and from <10−11 m s−1 to 10−9 m s−1 at the lower slope position, and were consistent with some other studies. Cumulative water flux was dominantly downward (−2.2 to −3.4 mm) at the mid slope position and this flow direction was consistent with this Orthic Dark Brown Chernozemic soil that was located in a “recharge area”. Cumulative water flux was dominantly upward at the lower slope position in 1985 (1.4 mm) and dominantly downward but of very low magnitude in 1986 (−0.1 mm), and this flow direction was consistent with this saline Gleyed Regosol and “saline seep”. Cumulative water fluxes as a percentage of annual precipitation were 0.8 to 1.8% at the mid slope position and 0.3 to 0.5% at the lower slope position.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1148c-1148
Author(s):  
Kris L. Wilder ◽  
J. M. Hart ◽  
Arthur Poole ◽  
David D. Myrold

Little work has been done to establish the rate and timing of nitrogen fertilizer applications to optimize return from fertilizer expenditures and minimize potential for ground and surface water pollution in Oregon cranberries (Vaccinium macrocarpon Ait.). Predicting cranberry N requirements is difficult because cranberries require little N and soil tests for N are not helpful for perennial crops, especially when grown in shallow sandy soils. We used 15N-labeled ammonium sulfate to measure both plant uptake and movement of fertilizer N in a south coastal Oregon cranberry bed. A bed planted to the Stevens variety was fertilized with 15N-labelled ammonium sulfate at two rates (18 kg/ha and 36 kg/ha) applied at five phonological stages: popcorn, hook, flowering, early bud, and late bud. Plant N uptake and translocation were measured throughout the growing season in uprights, flowers, berries, and roots, Initial results indicate that when N was applied at popcorn stage approximately 12% of the N was present in the above-ground vegetative biomass at harvest. Incorporation of fertilizer N into the duff and mineral soil was measured. An estimate of fertilizer N leaching was made by trapping inorganic N below the root zone using ion exchange resin bags.


2002 ◽  
Vol 12 (2) ◽  
pp. 250-256 ◽  
Author(s):  
Hudson Minshew ◽  
John Selker ◽  
Delbert Hemphill ◽  
Richard P. Dick

Predicting leaching of residual soil nitrate-nitrogen (NO3-N) in wet climates is important for reducing risks of groundwater contamination and conserving soil N. The goal of this research was to determine the potential to use easily measurable or readily available soilclimatic-plant data that could be put into simple computer models and used to predict NO3 leaching under various management systems. Two computer programs were compared for their potential to predict monthly NO3-N leaching losses in western Oregon vegetable systems with or without cover crops. The models were a statistical multiple linear regression (MLR) model and the commercially available Nitrate Leaching and Economical Analysis Package model (NLEAP 1.13). The best MLR model found using stepwise regression to predict annual leachate NO3-N had four independent variables (log transformed fall soil NO3-N, leachate volume, summer crop N uptake, and N fertilizer rate) (P < 0.001, R2 = 0.57). Comparisons were made between NLEAP and field data for mass of NO3-N leached between the months of September and May from 1992 to 1997. Predictions with NLEAP showed greater correlation to observed data during high-rainfall years compared to dry or averagerainfall years. The model was found to be sensitive to yield estimates, but vegetation management choices were limiting for vegetable crops and for systems that included a cover crop.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1482
Author(s):  
Silvia Pampana ◽  
Alessandro Rossi ◽  
Iduna Arduini

Winter cereals are excellent candidates for biosolid application because their nitrogen (N) requirement is high, they are broadly cultivated, and their deep root system efficiently takes up mineral N. However, potential N leaching from BS application can occur in Mediterranean soils. A two-year study was conducted to determine how biosolids affect biomass and grain yield as well as N uptake and N leaching in barley (Hordeum vulgare L.), common wheat (Triticum aestivum L.), durum wheat (Triticum turgidum L. var. durum), and oat (Avena byzantina C. Koch). Cereals were fertilized at rates of 5, 10, and 15 Mg ha−1 dry weight (called B5, B10, and B15, respectively) of biosolids (BS). Mineral-fertilized (MF) and unfertilized (C) controls were included. Overall, results highlight that BS are valuable fertilizers for winter cereals as these showed higher yields with BS as compared to control. Nevertheless, whether 5 Mg ha−1 of biosolids could replace mineral fertilization still depended on the particular cereal due to the different yield physiology of the crops. Moreover, nitrate leaching from B5 was comparable to MF, and B15 increased the risk by less than 30 N-NO3 kg ha−1. We therefore concluded that with specific rate settings, biosolid application can sustain yields of winter cereals without significant additional N leaching as compared to MF.


1998 ◽  
Vol 78 (3) ◽  
pp. 563-572 ◽  
Author(s):  
V. Jowkin ◽  
J. J. Schoenau

Nitrogen availability to a spring wheat crop was examined in the cropping season in a side-by-side comparison of no-till (first year) and tillage fallow in an undulating farm field in the Brown soil zone in southwestern Saskatchewan. Thirty different sampling points along a grid in each tillage landscape were randomly selected, representing 10 each of shoulder, footslope and level landscape positions. Nitrogen availability was studied i) by profile inorganic N content ii) by crop N uptake and yield of spring wheat (Triticum aestivum L.) and iii) by 15N tracer technique and in situ burial of anion exchange resin membranes (AEM).Pre-seeding available moisture content of the surface soil samples was significantly higher under no-till compared with tillage fallow. However, no significant differences in pre-seeding profile total inorganic N, crop N uptake and yield were observed between the treatments. At the landform scale, shoulder positions of the respective tillage systems had lower profile inorganic N, crop N uptake and yield compared with other slope positions. Soil N supply power, as determined by 15N tracer and AEM techniques, was not significantly different between the tillage treatments, indicating that N availability is not likely to be greatly affected in initial years by switching to no-till fallow in these soils under normal moisture conditions. Key words: Summerfallow, landscape, nitrogen, wheat


1997 ◽  
Vol 77 (1) ◽  
pp. 53-62 ◽  
Author(s):  
C. A. Campbell ◽  
F. Selles ◽  
R. P. Zentner ◽  
B. G. McConkey ◽  
R. C. McKenzie ◽  
...  

Prairie producers are now being rewarded with significant premiums for producing wheat (Triticum aestivum L.) of high protein concentration. We analyzed data from two 12-yr experiments conducted on a medium-textured Orthic Brown Chernozem at Swift Current, Saskatchewan, to determine and quantify factors influencing grain N concentration of hard red spring wheat grown on stubble land. Results of one of the 12-yr studies, a snow management × fertilizer N, zero-tillage experiment, showed that under hot, dry conditions, grain N concentration was very high and increased with moderate rates of fertilizer N (FN), then levelled off at higher rates of N. Under cool, wet conditions, grain N first decreased (due to N dilution by yield) then increased with further addition of FN. Under warm intermediate moisture conditions, grain N concentration increased at moderate rates in response to FN. Data for the two 12-yr experiments were pooled and multiple regression, with backward elimination, and stepwise selection used to develop the relationship:Grain N (g kg−1) = −7.63 + 0.05 WU − 0.000094 WU2 + 0.30 SN − 0.0022 SN2 − (0.0010 SN × WU) + (0.0017 FN × SN) + 0.0189 DD (R2 = 0.64, P = 0.001, n = 262)where WU = water use (mm), SN = soil test N (kg ha−1), FN = (kg ha−1), and DD = degree-days >5 °C (°C-days) from 1 May to 31 August. WU was available spring soil water in 0- to 1.2-m depth plus 1 May to 31 July precipitation, and SN was NO3-N in the 0- to 0.6-m depth, measured in the fall. We attempted to validate this model using data from a long-term crop rotation and a fertilizer trial experiment in the Brown soil zone, a tillage × rotation experiment in the Dark Brown soil zone in Saskatchewan, and an irrigation × N fertilizer experiment in the Brown soil zone of southern Alberta. Validation met with only modest success (R2 up to 0.70, P = 0.001). Generally, estimated grain N concentrations were lower than the measured values. Water use (negatively related) and temperature (DD) (positively related) were the most important factors influencing grain N, while FN and SN (positively related) were much less important. Because of the complexity of response in grain N to the aforementioned factors, and since farmers cannot predict weather conditions, fertilizer management to achieve high protein remains a challenge under dryland conditions. Key words: Soil test N, fertilizer N, available water, degree-days


Sign in / Sign up

Export Citation Format

Share Document