Cultivation effects on dispersible clay of soil aggregates

1995 ◽  
Vol 75 (1) ◽  
pp. 101-107 ◽  
Author(s):  
L. G. Fuller ◽  
Tee Boon Goh ◽  
D. W. Oscarson

The objective of this study was to examine the effect of long-term cultivation on clay dispersibility of four aggregate size fractions (2.0–9.5 mm, 0.85–2.0 mm, 0.25–0.85 mm, and < 0.25 mm) obtained from a Chernozemic soil by comparing two cultivated sites with an adjacent native prairie site. Aggregate size fractions (ASF) were subjected to increasing levels of ultrasonic energy and the amount of clay dispersed at each energy level was determined. Organic carbon, hexose carbon, soluble hexose C, total clay, cation exchange capacity (CEC), and exchangeable cations were measured for each ASF. Clay contained within prairie aggregates was held much more strongly within the aggregate and therefore showed greater stability towards dispersion by ultrasonic vibration. More energy was required to disperse one-half of the ASF clay under prairie than under cultivated soils (228–425, and 95–229 kJ L−1 for prairie and cultivated macroaggregates, respectively; 370–433, and 249–334 kJ L−1 for prairie and cultivated microaggregates, respectively). Clay dispersibility was significantly correlated with organic C, hexose C, soluble hexose C, non-hexose C, CEC, and exchangeable Ca and Mg but was not correlated with total ASF clay. Long-term cultivation of this soil resulted in a decrease in the energy required to disperse an equivalent proportion of clay from aggregates relative to that of the grassland soil. Thus, cultivation of these soils has resulted in aggregates which are more susceptible to clay dispersion and therefore prone to water erosion and surface crusting. Key words: Clay dispersion, aggregation, carbohydrate

2021 ◽  
Vol 8 (4) ◽  
pp. 2995-3005
Author(s):  
Hasbullah Syaf ◽  
Muhammad Albar Pattah ◽  
Laode Muhammad Harjoni Kilowasid

Earthworms (Pheretima sp.) could survive under abiotic stress soil conditions. Furthermore, their activities as ecosystem engineers allow for the creation of soil biostructures with new characteristics. Therefore, this study aimed to investigate the effect of the abundance of Pheretima sp. on the aggregate size, physicochemistry, and biology of the topsoil from the nickel mining area of Southeast Sulawesi, Indonesia. It was carried out by first grouping their abundance into zero, two, four, six, and eight individuals per pot and then carrying out tests. The Pheretima sp. were then released onto the surface of the topsoil and mixed with biochar that was saturated with tap water in the pot overnight. The results showed that the abundance of the species had a significant effect on the size class distribution, and aggregate stability of the soil. Furthermore, the size of the soil aggregates formed was dominated by the size class 2.83 - 4.75 mm under both dry and wet conditions. Under dry conditions, three size classes were found, while under wet conditions, there were five size classes. The results also showed that the highest and lowest stability indexes occurred with zero and eight Pheretima sp., respectively. Furthermore, the abundance had a significant effect on pH, organic C, total N, CEC, and total nematodes. However, it had no significant effect on the total P, C/N ratio, total AMF spores, and flagellate. The highest soil pH occurred with zero Pheretima sp., while with six and two members of the species, the total nematode was at its highest and lowest populations, respectively. Therefore, it could be concluded that the species was able to create novel conditions in the topsoils at the nickel mining area that were suitable for various soil biota.


2010 ◽  
Vol 34 (5) ◽  
pp. 1543-1551 ◽  
Author(s):  
Marihus Altoé Baldotto ◽  
Maria Cristina Canela ◽  
Luciano Pasqualoto Canellas ◽  
Leonardo Barros Dobbs ◽  
Ary Carlos Xavier Velloso

As an alternative to the relatively complex and expensive spectroscopic methods, the redox properties of humic acids, determined by potentiometric titrations, have been used to evaluate the stability of soil organic C. The objective of the present study was to establish a Redox Index of C Stability (RICS) and to correlate it with some properties of the humic acids extracted from different modal soils in Brazil (distinct weathering stages or management) to facilitate system comparison. The RICS was efficient for soil comparison and variations were comparable to those of the chemical and spectroscopic methods used for humic acid characterization. The values of soil pH, point of zero salt effect, sum of bases, exchangeable Ca content, weathering index, as well as the humic acid O/C ratio, quinone and semiquinone free radical contents, aromatic C and fluorescence intensity were closely related with the RICS. The RICS was higher in less weathered soils, with more active clays and higher fertility. The RICS values of soils under long-term sugarcane management were ranked in decreasing order: unburned, burned with vinasse, burned without vinasse.


1997 ◽  
Vol 77 (3) ◽  
pp. 351-358 ◽  
Author(s):  
A. N'Dayegamiye ◽  
M. Goulet ◽  
M. R. Laverdière

Long-term mineral fertilizer applications could reduce organic matter (OM) levels in soil if coupled with crop rotations with low organic residues inputs. The main objective of this study was to evaluate the C and N contents in whole soil, in densimetric OM fractions and in different aggregate size fractions of a Le Bras silt loam (Humic Gleysol). The treatments were arranged in a split-plot design, with dairy cattle manure applied at 0 and 20 Mgha−1 as the main factor. The subplots consisted of six fertilizer treatments (NK, PK, NP, NPK, NPKMg and the unfertilized check). The four year rotation included silage corn, (Zea mays L.) silage corn, wheat (Triticum Aestivum L.) and barley (Hordeum vulgaris L.). Contrary to mineral fertilizer, long-term manure applications significantly increased the C content in whole soil and also in the light and heavy fractions of OM (Fl and Fd). Mineral fertilizer significantly increased the C and N contents only in Fl. Moreover, manure application also increased the weight of the 5–8 mm aggregate size fraction and the C and N content in the 5–8 mm, 2–5 mm, 1–2 mm and 0,25–1 mm aggregate size fractions, compared to mineral fertilizer alone. In manured plots, soil C biomass, microbial respiration (CO2) and N mineralization (NO3) levels increased by 30% compared with mineral fertilizer treatments. Results of this study demonstrate the important effect of manure applications on C and N enrichment in soil and also on soil macroaggregation and biological activity. To maintain optimal C and N levels in soil and to favour soil macroaggregation, long-term mineral fertilizer application should be combined with crops in rotations which ensure high organic residues returns to soils. Key words: Macroaggregation, microbial biomass, N mineralization, long-term, light fraction, heavy fraction


2021 ◽  
Author(s):  
Wenjing Chen ◽  
Huakun Zhou ◽  
Leilei Qiao ◽  
Yuanze Li ◽  
Yang Wu ◽  
...  

Abstract Background and aims Global warming has increasingly serious impacts on the structure and function of the Tibetan Plateau ecosystem. However, the mechanism by which warming affects the biogeochemical processes and consequently the microbial nutrient limitation in soil aggregates is not clear. Methods In the present study, we used open-top chamber experiments to simulate warming in an alpine meadow and an alpine shrubland on the Qinghai-Tibet Plateau to understand how warming affects nutrient utilization and microorganism-limiting mechanisms in soil aggregates. Results The results showed that long-term warming treatment had contrasting effects on soil organic carbon (SOC) content of the alpine meadow and that of the shrubland. This difference was more pronounced with the increase in soil aggregate size, and the SOC content in microaggregates (MIGA) was significantly higher than that in large macroaggregates (LMGA). Soil enzyme activity increased with the decrease in aggregate size and was not significantly affected by warming treatment. Enzyme stoichiometry demonstrated that microbial P limitation is widespread on the Tibetan Plateau, and the long-term warming treatment exacerbated it, which has significant differences in shrubland. At the same time, the long-term warming treatment had no significant effect on C limitation in the alpine shrubland and the alpine meadow, but soil aggregate size affected the C limitation patterns of microorganisms and showed strong limitations in MIGA. Conclusions The microbial P limitation in shrubland is more sensitive to warming than that of grassland. Soil aggregates mediate the acquisition of carbon by microorganisms, and the carbon limitation in MIGA is the greatest. By providing a new perspective on this topic, our study increased our understanding of the effects of warming on microbial nutrient utilization and restriction patterns in soil aggregates.


Clay Minerals ◽  
1994 ◽  
Vol 29 (2) ◽  
pp. 205-213 ◽  
Author(s):  
M. Müller-Vonmoos ◽  
G. Kahr ◽  
F.T. Madsen

AbstractTo investigate the long-term stability of bentonite under final disposal conditions of highly radioactive waste, K-bentonites from Kinnekulle (Sweden) and from the Marias River Formation in the Montana disturbed belt (USA) were studied. After separating the mixed-layer illite-smectite (I-S) from the K-bentonite samples, the interlayer charge was calculated from the cation exchange capacity (CEC) and the amount of fixed interlayer K+ ions (Kfix). The interlayer charge was also determined by the alkylammonium method. According to both methods the interlayer charge was in the range for smectite. The results show that the amount of exchangeable cations increased linearly with decreasing Kfix. A small increase in the interlayer charge with increasing Kfix was observed as was a linear correlation between the intracrystalline swelling up to the second water layer, the CEC and the content of Kfix. Divalent exchangeable cations were then found to be surrounded by approximately 24 water molecules per cation. Fixed interlayer K+ ions were unhydrated. Forming the third and fourth water layer, swelling was presumably limited by free silica formed by the vitrification of the volcanic ash.


1984 ◽  
Vol 64 (4) ◽  
pp. 647-656 ◽  
Author(s):  
J. F. DORMAAR

Two non-replicated, unfertilized, dryland grain rotations—continuous wheat and wheat-fallow — were established in 1912 on a Dark Brown Chernozemic soil in southern Alberta. The effect of long-term cropping on the monosaccharide distribution in the hydrolysates of the water-stable aggregates was assessed. Although all the hydrolysates of the aggregates had the same suite of monosaccharides, the relative proportions changed with cultivation. The eight monosaccharides identified represented between 92 and 96% of the total GC detector response. The monosaccharide C of aggregate organic C for the native prairie varied from 6.9 to 7.6%, while for the continuous wheat and the wheat and fallow of the wheat-fallow rotation it varied from 3.6 to 5.5%, from 1.8 to 5.1%, and from 1.6 to 6.7%, respectively; the higher percentages were associated with the larger aggregate fractions. Except for galactose, the average relative proportions of the monosaccharides identified in the hydrolysates of the water-stable aggregates were not much different from those reported in the literature for the hydrolysates of whole soils. Key words: Monosaccharides, aggregate fractions, water-stable aggregates, capillary gas chromatography, long-term rotation


2020 ◽  
Author(s):  
Jinjing Lu ◽  
Sheng ping Li ◽  
Xueping Wu ◽  
Aurore Degre

&lt;p&gt;As the basic unit of soil, aggregates are considered as a stable soil organic ( SOC ) pool. Changes in organic subtract due to straw addition induce variations in soil microbial community or activity, which may effect the C sequestration in aggregates. Most of the previous studies on soil microorganisms assessment was done at large scale i.e. larger quantities of soil, however, few studies on SOC is known in aggregate size fractions. This study investigated the effects of soil aggregate size on the distribution of microorganism and SOC, and the relationship of microorganism and C sequestration inside aggregate size fractions with &lt;sup&gt;13&lt;/sup&gt;C-labelled straw addition. Soil samples were collected from 0-15 cm and classified into 5 aggregates sizes classes ( &amp;#65310;5 mm, 2-5 mm, 1-2 mm, 0.25-1 mm and &amp;#65308;0.25 mm ), and the graded aggregates were incubated for 180 days at 20&amp;#160;&amp;#176;C, with or without&amp;#160;&lt;sup&gt;13&lt;/sup&gt;C-labelled straw residue. The incorporation of &lt;sup&gt;13&lt;/sup&gt;C into the five aggregate size fractions was analyzed.&lt;/p&gt;&lt;p&gt;After incubation, the SOC, DOC and ROC contents were increased more rapidly and significantly in aggregate ( &amp;#65310;5 mm ) than that in aggregate ( &amp;#65308;5 mm ) under straw addition, with the same trend of new carbon derived from straw. The total PLFAs was increased most significantly in aggregate ( &amp;#65310;5 mm ), especially fungi and negative bacteria ( G- ), while the positive bacteria ( G+ ) increased slightly in aggregate ( &amp;#65308;0.25 mm ), with no significant change in total PLFAs. The proportion of bacteria in total microorganism increased gradually, as the aggregate size increased in straw treatment. The results imply that aggregate ( &amp;#65310;5 mm ) have more space for C sequestration and greater contribution to new carbon turnovering in soil than other small aggregates, and it gradually tended to be bacterial with the enrichment of carbon. In addition, the SOC contents were strongly related to the amount of fungi and G- in aggregate ( &amp;#65308;5 mm ), while related to G+ in aggregate ( &amp;#65308;0.25 mm ) under straw addition.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document