scholarly journals Biological Control of Pathogens Causing Root Rot Complex in Field Pea Using Clonostachys rosea Strain ACM941

2003 ◽  
Vol 93 (3) ◽  
pp. 329-335 ◽  
Author(s):  
Allen G. Xue

Pea root rot complex (PRRC), caused by Alternaria alternata, Aphanomyces euteiches, Fusarium oxysporum f. sp. pisi, F. solani f. sp. pisi, Mycosphaerella pinodes, Pythium spp., Rhizoctonia solani, and Sclerotinia sclerotiorum, is a major yield-limiting factor for field pea production in Canada. A strain of Clonostachys rosea (syn. Gliocladium roseum), ACM941 (ATCC 74447), was identified as a mycoparasite against these pathogens. When grown near the pathogen, ACM941 often was stimulated to produce lateral branches that grew directly toward the pathogen mycelium, typically entwining around the pathogen mycelium. When applied to the seed, ACM941 propagated in the rhizosphere and colonized the seed coat, hypocotyl, and roots as the plant developed and grew. ACM941 significantly reduced the recovery of all fungal pathogens from infected seed, increased in vitro seed germination by 44% and seedling emergence by 22%, and reduced root rot severity by 76%. The effects were similar to those of thiram fungicide, which increased germination and emergence by 33 and 29%, respectively, and reduced root rot severity by 65%. When soil was inoculated with selected PRRC pathogens in a controlled environment, seed treatment with ACM941 significantly increased emergence by 26, 38, 28, 13, and 21% for F. oxysporum f. sp. pisi, F. solani f. sp. pisi, M. pinodes, R. solani, and S. sclerotiorum, respectively. Under field conditions from 1995 to 1997, ACM941 increased emergence by 17, 23, 22, 13, and 18% and yield by 15, 6, 28, 6, and 19% for the five respective pathogens. The seed treatment effects of ACM941 on these PRRC pathogens were greater or statistically equivalent to those achieved with thiram. Results of this study suggest that ACM941 is an effective bioagent in controlling PRRC and is an alternative to existing chemical products.

2003 ◽  
Vol 83 (3) ◽  
pp. 519-524 ◽  
Author(s):  
A. G. Xue

The efficacy of seed treatments with bioagent ACM941 (a strain of Clonostachys rosea), its formulated products GB116 and ACM941-Pro, and common fungicides for the control of pea root rot complex were examined in six field trials in western Canada from 1996 to 2000. The effects on seedling emergence, root rot severity, and yield varied among years. In trials 1 and 2 (1996–1997), none of the treatments significantly reduced root rot severity or increased yield. ACM941 + Thiram 75WP was the most effective treatment, increasing emergence by 17.4% and was significantly better than that of the untreated controls. In trials 3 and 4 (1997–1998), Apron FL alone and ACM941 + Apron FL were significantly better than the untreated control, increasing emergence by 6.2 and 7.7%, and yield by 10.8 and 11.5%, respectively. In trials 5 and 6 (1999–2000), AC M 941 and GB116 were equally the most effective treatments, increasing emergence by 11.5 and 12.2%, and yield by 8.2 and 6.3%, respectively. These effects were significantly greater than that of the untreated control, but not significantly different from those of Apron FL or Vitaflo-280. ACM941-Pro was developed and tested in 2000 only, and it increased emergence by 17.1% and reduced root rot severity by 29.6%. Key words: Bioagent, Clonostachys rosea, field pea, Pisum sativum, pea root rot complex (PRRC), seed treatment, fungicide


2021 ◽  
Vol 4 (28) ◽  
pp. 149-158
Author(s):  
N.M. Sidorov ◽  
◽  
E.A. Gyrnets ◽  
M.M. Astakhov ◽  
K.Yu. Saenko ◽  
...  

The massive use of one-component fungicides has caused the problem of the emergence of resistant forms of phytopathogens. The development of multicomponent plant protection products is one of the ways of dealing with such a situation. The aim of the study is to determine the effectiveness of multicomponent chemical dressing agents in suppressing the most common fungal pathogens and seed infections in vitro. This work was performed in 2020 in the Federal Research Center for Biological Plant Protection (Krasnodar) in the laboratory of the creation of microbiological plant protection products and a collection of microorganisms. Fungi of the Fusarium, Microdochium, Bipolaris, Alternaria, Penicillium, Rhizoctonia, Septoria, Pyrenophora genera were used as test objects. The fungicidal activity of chemical preparations against economically significant phytopathogens causing root rot was evaluated in laboratory conditions by the method of serial dilutions followed by sowing on a nutrient medium. In addition, the effectiveness of the preparations was investigated by the method of treated seeds phytoexamination according to GOST 12044–93. The preparations, which included triazoles and phenylpyrroles, had the strongest inhibitory effect (100 %) on pathogens of Rhizoctonia, helminthosporiosis and septoria. The preparation containing compounds of the group of triazoles and strobilurins suppressed the growth of Rhizoctonia solani only. The preparations’ inhibitory effect on a number of phytopathogenic fungi was manifested in growth retardation, absence of aerial mycelium development and mycelium pigmentation. Concerning the causative agents of Fusarium root rot, the two-component preparations efficacy ranged from 51 % to 74.4 %; three-component one – from 42.9 % to 84.7 % depending on the species of the genus Fusarium. Presowing seed treatment made it possible to inhibit the growth of fungi of the genera Fusarium, Mucor, Aspergillus; significantly inhibit the development of the fungus Alternaria (spread in the experimental variant – 1.7 %, in the control variant – 46.7 %). From the data obtained, it can be concluded that multicomponent preparations based on triazoles and phenylpyrroles are highly effective in suppressing a wide range of phytopathogens and can be recommended for presowing seed treatment.


2020 ◽  
Vol 100 (3) ◽  
pp. 206-216
Author(s):  
Ashebir T. Godebo ◽  
James J. Germida ◽  
Fran L. Walley

Aphanomyces euteiches is a soil-borne pathogen that causes root rot of pea and can significantly affect pea production in western Canada. This study aimed to isolate and identify soil bacteria with antagonistic activity towards A. euteiches mycelial and zoospore developmental stages under in vitro conditions and assess their potential as biocontrol agents against aphanomyces root rot in field pea under growth chamber conditions. In vitro screening of soil bacteria identified 184 antagonistic isolates, including 22 from an existing culture collection. Mean mycelial growth inhibition zones ranged from 1 to 12 mm, and mean zoospore germination inhibition ranged from 0% to 100%. Use of 16S rDNA sequence analysis placed isolates into 18 different bacterial genera. Screening of 47 bacteria that inhibited both infective stages identified 29 potential biocontrol strains, including Rhizobium spp. that significantly (α = 0.05) suppressed aphanomyces root rot in field pea grown in vermiculite, suggesting the intriguing possibility of using N-fixing Rhizobium inoculants as biocontrol agents for aphanomyces control. Further screening of 20 isolates as soil inoculants identified K-Hf-L9 (Pseudomonas fluorescens), PSV1-7 (Pantoea agglomerans), and K-Hf-H2 (Lysobacter capsici) isolates as having the highest biocontrol activity, significantly (α = 0.05) suppressing aphanomyces root rot in field pea in growth chamber trials. This study demonstrates the possibility of aphanomyces root rot management using biocontrol agents.


BioControl ◽  
2021 ◽  
Author(s):  
Mudassir Iqbal ◽  
Maha Jamshaid ◽  
Muhammad Awais Zahid ◽  
Erik Andreasson ◽  
Ramesh R. Vetukuri ◽  
...  

AbstractUtilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.


2020 ◽  
Vol 457 (1-2) ◽  
pp. 339-354
Author(s):  
Kimberly Zitnick-Anderson ◽  
Luis E. del Río Mendoza ◽  
Shana Forster ◽  
Julie S. Pasche

Abstract Background and aims Field pea production is greatly impacted by multiple soil-borne fungal and oomycete pathogens in a complex. The objectives of this research were to 1) identify the soil-borne pathogens associated with field pea in North Dakota and; 2) develop prediction models incorporating the occurrence of the soil-borne pathogen communities, soil edaphic properties and disease incidence. Methods Soil and plants were sampled from 60 field pea fields in North Dakota during 2014 and 2015. Plants (1500 across two years) were rated for both root rot and soil-borne pathogens isolated from roots. Soils were analyzed for edaphic properties. Indicator species analysis was used to identify soil-borne pathogen communities. Logistic regression was used to determine associations and develop prediction models. Results Survey results from 2014 and 2015 indicated that the most prevalent soil-borne pathogens identified in field pea fields were Fusarium spp. and Aphanomyces euteiches. Five soil-borne pathogen communities were identified; three of which had statistically significant associations characterized by (1) Fusarium acuminatum, (3) A. euteiches, and (4) Fusarium sporotrichioides. The occurrence of the three communities were associated with clay content, soil pH, Fe2+, and K+. Disease incidence was associated with the presence of either community 1 or 3 and K+. Conclusions The results generated from this research will contribute to the development of management strategies by providing a soil-borne pathogen community prediction tool.


2001 ◽  
Vol 81 (3) ◽  
pp. 509-517 ◽  
Author(s):  
S. F. Hwang ◽  
B. D. Gossen ◽  
K. F. Chang ◽  
G. D. Turnbull ◽  
R. J. Howard

When cool, wet conditions persist after planting, Pythium spp. can be an important constraint to stand establishment in field pea. Laboratory studies and field trials were conducted over 3 yr to assess the impact and evaluate the interactions of Pythium spp., metalaxyl seed treatment and damage to seed on seedling establishment, root rot severity and seed yield of field pea. Seedling emergence, seedling size, and seed yield were reduced by inoculation with Pythium spp. and by mechanical damage to the seed. Fungicide seed treatment reduced the impact of seed damage, but did not always restore seedling emergence and seed yield to the same level as from undamaged seed. Undamaged seed treated with metalaxyl was not affected by inoculation with Pythium spp. Differences among cultivars, although often significant, were small relative to the effect of seed injury. Laboratory studies showed a negative linear relationship between inoculum concentration and emergence from untreated seed. They also showed that Pythium spp. had a similar impact on seedling emergence in cool (20/10°C day/night) and cold (12/6°C) soils. This study showed that planting fungicide-treated, high-quality field seed was an effective means of maximizing emergence and stand establishment for commercial field pea production. Key words: Pisum sativum, seed vigour, metalaxyl, Pythium, seed damage


2007 ◽  
Vol 87 (1) ◽  
pp. 145-155 ◽  
Author(s):  
S. F. Hwang ◽  
B. D. Gossen ◽  
R. L. Conner ◽  
K. F. Chang ◽  
G. D. Turnbull ◽  
...  

Seedling blight can cause substantial reductions in stand density of field pea on the Canadian prairies. Ninety-four isolates of Rhizoctonia solani were obtained from soil samples collected from 37 pea fields in 1999 in Alberta, Canada. Sixty isolates were characterized as anastomosis group (AG)-4 and 12 isolates as AG-2-1. Some of these isolates caused severe pre-emergence damping-off and were classified as highly pathogenic; 41 of the 44 highly pathogenic isolates were AG-4 and three were AG-2-1. Two highly pathogenic AG-4 isolates were used to assess the effect of inoculum density on survival and growth of field pea seedlings, and the impact of seeding date, seeding depth, soil temperature, seed damage, seed treatments and seeding density on seedling blight and root rot injury. As inoculum density increased, so did root rot severity, while seedling establishment, shoot dry weight and root dry weight declined. Under controlled conditions, seedling establishment in the noninoculated control increased as soil temperatures increased, but establishment and growth declined in inoculated treatments. In a temperature gradient study, seedling infection was highest when mean daily temperatures were 17.5°C or higher. In field trials over 8 station years, delayed seeding often resulted in reduced seedling establishment in inoculated treatments, although this trend was not consistent across sites or years. Seed yield consistently declined with later seeding dates. Seed treatment with fungicides (carbathiin + thiram, metalaxyl) improved establishment and productivity in inoculated treatments, especially where seed was damaged prior to planting. Seeding depth had no impact on root rot severity. Emergence and seed yield increased with seeding density, but increasing density beyond 90 seeds m-2 did not result in proportionately higher yields. These results indicate that a combination of seed treatment and early seeding can reduce Rhizoctonia injury to pea seedlings under field conditions. Key words: Pisum sativum, Rhizoctonia solani (AG-4), management, seeding depth, seeding rate


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 288-288 ◽  
Author(s):  
S. Chatterton ◽  
R. Bowness ◽  
M. W. Harding

In recent years, root rots have severely impacted yields of field pea (Pisum sativum L.) in the Canadian province of Alberta. Above-normal precipitation levels in the springs of 2011 to 2013 led to the hypothesis that Aphanomyces euteiches Drechsler may play a role in root rot in water-saturated pea fields. To determine causal agent(s) of root rot, 145 pea fields were surveyed at flowering in July 2013 (1). Symptoms of root rot were abundant; the most prominent included red vascular streaking and dark brown rot of the tap root, indicative of Fusarium spp., but brown discoloration and cortical decay of lateral roots, indicative of A. euteiches, was also observed. Total genomic DNA was extracted from diseased root samples from each field, using the Qiagen DNeasy Plant kit, and amplified with species-specific primers for A. euteiches (2). Fusarium spp. were present in all fields, but seven fields located within a 200-km radius yielded a positive reaction for A. euteiches. Five fields were re-visited in May 2014 to collect soil for a bait test (3). Tests were performed using surface-sterilized pea seeds (cv. CDC Meadow) treated with Allegiance FL (Bayer, a.i. metalaxyl) at a rate of 110 ml/kg of seed. Five seeds per pot were planted into field soils in 10-cm pots with 12 replicate pots per field. Soils were irrigated as needed until the second-node stage and then kept at saturation for 14 days. Thirty day-old pea roots were evaluated for root rot symptoms; plated onto cornmeal agar amended with metalaxyl, benomyl, and vancomycin (MBV) without surface sterilization; and visualized microscopically for presence of oospores in the roots. Roots from three out of the five field soils showed symptoms typical of A. euteiches infection, including honey-brown discoloration, degradation of the root cortex, and presence of oospores. Root rot symptoms from the remaining fields were characteristic of Fusarium root rot, and oospores were not observed in roots. Fungal cultures with fast-growing, white, aerial mycelia characteristic of A. euteiches on MBV, were recovered from roots with Aphanomyces root rot symptoms, and transferred to PDA. To confirm pathogen identity, total DNA was extracted from 7-day-old cultures growing on PDA using the Qiagen DNeasy Plant Kit. The ribosomal DNA internal transcribed spacer (ITS) region was amplified using the primer pair ITS1 and ITS4 and sequenced (4). The sequences, deposited in GenBank with accession numbers KM486065, KM486066, and KM486067, were 100% identical to the ITS rDNA sequence of several isolates of A. euteiches using a BLASTn query. Fusarium spp. were also recovered from all root samples in the soil bait test. Total DNA extracted from roots was used in PCR assays with A. euteiches-specific primers as described above. PCR amplification of root DNA was successful only from the same three fields that showed Aphanomcyces root rot symptoms, further verifying presence of A. euteiches. The inability to detect or recover A. euteiches from two fields that had tested positive in the survey was likely due to patchy distribution of this pathogen and emphasizes the importance of rigorous soil collection methods to accurately detect pathogens. Although this is the first record of A. euteiches on field pea in Alberta, the distribution of A. euteiches within a 200-km radius in southern Alberta indicates that it has likely been present in soils for several years. The interaction between A. euteiches and Fusarium spp. infection in the root rot complex of field pea and their impact on field pea production in Alberta is currently being investigated. References: (1) S. Chatterton et al. Can. Plant Dis. Surv. 94:189, 2014. (2) C. Gangneux et al. Phytopathology 104:1138, 2014. (3) D. Malvick et al. Plant Dis. 78:361, 1994. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.


2012 ◽  
Vol 48 (No. 1) ◽  
pp. 37-43 ◽  
Author(s):  
Kunal ◽  
P. Sharma

Chemical seed protectants are used to reduce the adverse effects of seedling fungal pathogens or insect attack on legume pastures and crops. Chickpea seeds are also frequently treated with Mesorhizobium sp. Cicer inoculant to promote effective symbiotic nitrogen fixation (SNF), which seems to be a cost effective measure. The population of viable Mesorhizobium sp. Cicer on seeds of chickpea declined with time of storage (4°C) in pesticide treated and untreated chickpea seeds in vitro. A significant reduction in chickpea rhizobia was observed in seed treatment with Captan followed by Endosulfan and Chlorpyrifos. In a field experiment during the winter season 2006–2008, no difference in the emergence count of chickpea plants was observed. Treatments inoculated with Mesorhizobium sp. Cicer alone or along with Captan, Chlorpyrifos or Endosulfan showed improved plant growth and symbiotic parameters (plant height, nodulation, leghaemoglobin content, and nitrogen content) in comparison with the uninoculated control treatment. Significantly higher grain yield (9.6%) was observed in the treatment inoculated with Mesorhizobium sp. Cicer alone as compared to the uninoculated control. A non-significant difference in grain yield among treatments where Mesorhizobium sp. Cicer along with a mixture of fungicide and insecticides was applied was observed in contrast to the Mesorhizobium sp. Cicer treatment. In conclusion, the recommended rates of fungicide and insecticides as seed treatment were not detrimental to chickpea-Mesorhizobium sp. Cicer symbiosis, hence they can be safely used to obtain higher productivity.  


1970 ◽  
Vol 48 (3) ◽  
pp. 631-637
Author(s):  
R. D. Lumsden ◽  
G. C. Papavizas ◽  
W. A. Ayers

β-Methylaspartic acid (MAA) effectively reduced root rot of pea, caused by Aphanomyces euteiches, at concentrations as low as 4 p.p.m., and prevented disease at 15–20 p.p.m. The degree of methylation of pectic materials in healthy pea plants was not increased by MAA, which thus could not account for induced resistance to root rot. Further studies revealed that MAA in the absence of glutamic acid affected zoospore germination and inhibited growth of A. euteiches in vitro. Inhibition of growth and of root rot development was almost completely reversed by glutamic and aspartic acids, and partly reversed by several other amino acids. Studies of the mechanism of inhibition of growth of A. euteiches by MAA indicated that MAA did not affect glutamine synthetase or aspartate oxoglutarate transaminase, two amino acid metabolizing enzymes produced by A. euteiches, nor did it affect the uptake of 14C-labeled glutamic acid by mycelium of the fungus and the incorporation of glutamate into alcohol-insoluble material. It was concluded that MAA directly affects growth of A. euteiches and in this way controls root rot of pea.


Sign in / Sign up

Export Citation Format

Share Document