Improvement of carrot crop establishment by combining seed treatments with increased seed-bed moisture availability

1990 ◽  
Vol 115 (1) ◽  
pp. 75-81 ◽  
Author(s):  
W. E. Finch-Savage ◽  
W. G. Pill

SUMMARYIn studies of carrots sown on three dates at Wellesbourne in 1986, mean time to seedling emergence and spread of times to seedling emergence of untreated and fluid-drilled seeds increased as seed-bed moisture at sowing decreased. These differences were not observed with irrigation before sowing.Osmotic priming increased the percentage of seeds with emerged radicles at the time of fluid drilling from 17% in the untreated control to 56%. Irrespective of seed-bed moisture, time to emergence was shorter from primed germinating seeds than from germinating seeds, both treatments giving earlier seedling emergence than untreated seeds. Seedling shoot weight was greater from treated than from untreated seeds.Seed-bed characteristics on unirrigated plots had no effect on seedling emergence when soil moisture was adequate but, where soil moisture was limiting, rolling the seed bed to increase capillarity resulted in 79% emergence compared with the 67% average from seed beds that were not rolled. Application of a soil conditioner to stabilize the seed-bed surface structure generally improved emergence when rain fell soon after sowing. The results suggested that a combination of seed-bed and seed treatments can significantly improve the predictability of crop establishment of carrots on different dates.

1984 ◽  
Vol 102 (2) ◽  
pp. 461-468 ◽  
Author(s):  
W. E. Finch-Savage

SummaryThe seedling emergence from fluid-drilled germinating and natural onion seeds was compared at five sowing dates between 10 February and 18 May on irrigated and unirrigated plots in two experiments. In the second experiment fluid-drilled seeds selected for uniform germination were also included. There were few significant differences between the emergence of seedlings from germinating and natural seeds in the field sowings of Expt 1. However, a reduction in mean emergence time at the earliest sowing led to an increase in bulb weight while a reduction in the spread of emergence at sowing 3 led to a reduced coefficient of variation of bulb diameter at harvest. Under the less variable conditions on the irrigated plots of Expt 2 germinating seeds reduced mean emergence time and increased percentage emergence compared with natural seed at some sowings. Fluid-drilled selected germinated seeds, however, reduced mean emergence time and increased percentage emergence at every sowing and reduced the spread of emergence at all but the first sowing compared with natural seed.Low soil moisture content made seedling emergence more unpredictable and reduced the benefits gained by sowing germinated seeds. The results presented suggest that techniques to increase the proportion of germinated seeds at the point of sowing and economical methods of applying water during periods of low soil moisture following sowing are needed if the full benefits of fluid drilling are to be realized.


2003 ◽  
Vol 83 (3) ◽  
pp. 519-524 ◽  
Author(s):  
A. G. Xue

The efficacy of seed treatments with bioagent ACM941 (a strain of Clonostachys rosea), its formulated products GB116 and ACM941-Pro, and common fungicides for the control of pea root rot complex were examined in six field trials in western Canada from 1996 to 2000. The effects on seedling emergence, root rot severity, and yield varied among years. In trials 1 and 2 (1996–1997), none of the treatments significantly reduced root rot severity or increased yield. ACM941 + Thiram 75WP was the most effective treatment, increasing emergence by 17.4% and was significantly better than that of the untreated controls. In trials 3 and 4 (1997–1998), Apron FL alone and ACM941 + Apron FL were significantly better than the untreated control, increasing emergence by 6.2 and 7.7%, and yield by 10.8 and 11.5%, respectively. In trials 5 and 6 (1999–2000), AC M 941 and GB116 were equally the most effective treatments, increasing emergence by 11.5 and 12.2%, and yield by 8.2 and 6.3%, respectively. These effects were significantly greater than that of the untreated control, but not significantly different from those of Apron FL or Vitaflo-280. ACM941-Pro was developed and tested in 2000 only, and it increased emergence by 17.1% and reduced root rot severity by 29.6%. Key words: Bioagent, Clonostachys rosea, field pea, Pisum sativum, pea root rot complex (PRRC), seed treatment, fungicide


1986 ◽  
Vol 107 (2) ◽  
pp. 249-256 ◽  
Author(s):  
W. E. Finch-Savage

SummaryThe emergence of seedlings from natural, germinating and selected uniformlygerminated onion seeds was compared in a range of changing patterns of soil moisture. The timing, spread and amount of seedling emergence from seeds in all three treatments were affected by the timing of water availability in the seed bed and these effects differed between treatments.The rate of seedling emergence in all three treatments under non-limiting soil moisture conditions was correlated with mean temperature, but this relationship was obscured in irrigation treatments where water stress occurred. However, if the seed bed was moist at sowing irrespective of subsequent moisture stress the reciprocals of the time to the start, time to 50% and time to the end of seedling emergence from uniformly germinated seeds were correlated with mean temperature (r > 0·87, D.F. 27).The results show that if the seed bed is irrigated prior to sowing and soil moisture is maintained during the first 3 days following sowing high levels of seedling emergence with both predictable timing and uniformity can be achieved by sowing uniformlygerminated seeds. Seedling emergence from natural and germinating seeds was much less predictable.


1991 ◽  
Vol 1 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Wallace G. Pill

Seed treatments, gels, and planters associated with fluid drilling are reviewed in detail. The future of fluid drilling likely lies predominantly in the sowing of primed seeds rather than germinated seeds in the carrier gel. The primed seeds may be hydrated before fluid drilling to enhance germination and seedling emergence. The gel can carry a variety of chemical or biological additives appropriate for the crop and seedbed conditions. The positional advantage resulting from additive incorporation in the fluid-drilling gel represents a more eflicient, cost-effective, and environmentally sound application method than others such as binding or spraying.


2009 ◽  
Vol 89 (4) ◽  
pp. 811-821 ◽  
Author(s):  
M R Fernandez ◽  
T K Turkington ◽  
W E May

Fusarium head blight (FHB) is well established in the eastern prairies, but for the most part it has been absent from western regions, especially under dryland conditions. This has been largely attributed to dry and hot conditions during some years, and the limited occurrence of F. graminearum in the western prairies. It is of importance to prevent the movement of F. graminearum, the most important FHB pathogen in North America, to areas where this pathogen is not commonly found. Three controlled-environment studies, using different Fusarium-infected common and durum wheat seed lots, were conducted to determine the effectiveness of currently registered fungicide seed treatments in improving seedling emergence and plant development, and preventing the growth of F. graminearum from infected seed to plant tissue. Fungicide treatments improved seedling emergence from the most infected seed over the untreated infected control, but most treatments did not improve emergence in the other experiments. Plant growth in the fungicide treatments was either similar to or slower than in the untreated controls. Fusarium graminearum was isolated from discoloured tissue in all treatments and was generally more common in crowns than in subcrown internodes. No fungicide treatment reduced discolouration of plant tissue or percentage isolation of F. graminearum or other Fusarium spp. consistently. We conclude that while currently registered seed treatments might be effective in improving seedling emergence in some infected wheat seed lots, they do not prevent the growth of F. graminearum from seeds to plant tissue. For the western prairies, the use of fungicide seed treatments as a strategy in the prevention of spread of FHB would require that they be effective primarily against F. graminearum. Performance of fungicide seed treatments against Fusarium-infected wheat seed should also be determined under typical growing conditions across the western prairies.Key words: Seed treatments, fungicides, wheat, root rot, crown rot, Fusarium graminearum, Fusarium avenaceum


2003 ◽  
Vol 33 (5) ◽  
pp. 931-945 ◽  
Author(s):  
Michelle de Chantal ◽  
Kari Leinonen ◽  
Hannu Ilvesniemi ◽  
Carl Johan Westman

The aim of this study is to determine the effect of site preparation on soil properties and, in turn, the emergence, mortality, and establishment of Pinus sylvestris L. (Scots pine) and Picea abies (L.) Karst. (Norway spruce) seedlings sown in spring and summer along a slope with variation in soil texture and moisture. Three site preparation treatments of varying intensities were studied: exposed C horizon, mound (broken L–F–H–Ae–B horizons piled over undisturbed ground), and exposed Ae–B horizons. Seedling emergence was higher in the moist growing season than in the dry one. During a dry growing season, mounds and exposed C horizon had negative effects on soil moisture that increased mortality. Moreover, frost heaving was an important cause of winter mortality on mounds and exposed C horizon, whereas frost heaving was low on exposed Ae–B horizons, even though soil moisture and the content of fine soil particles (<0.06 mm) were high. Frost heaving mortality was higher for summer-sown than for spring-sown seedlings and for P. abies than for P. sylvestris. Growing season mortality was high following a winter with frost heaving, suggesting that roots were damaged, thereby making seedlings more susceptible to desiccation.


2002 ◽  
Vol 82 (4) ◽  
pp. 855-859 ◽  
Author(s):  
M. L. Leblanc ◽  
D. C. Cloutier ◽  
C. Hamel

A 2-year field study was conducted in corn to determine the influence of rainfall, irrigation and soil water content on common lambsquarters and barnyardgrass emergence. Rainfall or irrigation had no influence on the final weed density and little on the pattern of weed emergence because the soil water content was at or greater than field capacity during the main weed emergence period. Irrigation may hasten the first weed emergence by warming the soil when temperature is limiting for germination. In southwestern Quebec, temperature appears to be the most important factor regulating germination in the spring since soil moisture is normally at field capacity for a long period, in part because of the melting of snow. Key words: Irrigation, weed emergence, soil moisture


Weed Science ◽  
1982 ◽  
Vol 30 (1) ◽  
pp. 70-73 ◽  
Author(s):  
Tsern-Shi Chang ◽  
Morris G. Merkle

Studies in growth chambers indicated that CGA-43089 {α-[(cyanomethoxy)imino] benzeneacetonitrile} applied at a rate of 1.25 g/kg of seed reduced the phytotoxicity of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide], bensulide [o,o-diisopropyl phosphorodithioateS-ester withN-(2-mercaptoethyl) benzenesulfonamide], EPTC (S-ethyl dipropylthiocarbamate), UBI-S734 {2-[(1,2,5-dimethylphenyl)ethylsulfonyl] pyridineN-oxide} and MBR-18337 {N-[4-(ethylthio)-2-(trifluoromethyl)phenyl] methanesulfonamide} to grain sorghum [Sorghum bicolor(L.) Moench] during seed germination and seedling emergence. The protected sorghum tolerated metolachlor over a wider range of rates than it tolerated the other herbicides. CGA-43089 did not protect sorghum from the phytotoxicity of trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine). Of seven other oximes tested as seed treatments, dimethylglyoxime, benzophenone oxime, pyridine-2-aldoxime, benzoin-α-oxime, and methyl thioacetohydroxamate showed promise for increasing the tolerance of grain sorghum to metolachlor. In general, higher rates of these oximes than the rate of CGA-43089 were required for equivalent protection of sorghum.


Weed Science ◽  
1993 ◽  
Vol 41 (4) ◽  
pp. 534-540 ◽  
Author(s):  
Ronald E. Jones ◽  
Robert H. Walker

Greenhouse and growth chamber experiments with potted plants were conducted to determine the effects of interspecific root and canopy interference, light intensity, and soil moisture on water uptake and biomass of soybean, common cocklebur, and sicklepod. Canopy interference and canopy plus root interference of soybean with common cocklebur increased soybean water uptake per plant and per unit leaf area. Root interference with soybean decreased common cocklebur water uptake per plant. Canopy interference of soybean with sicklepod increased soybean water uptake per unit leaf area, while root interference decreased uptake per plant. Combined root and canopy interference with soybean decreased water uptake per plant for sicklepod. Soybean leaf area and shoot weight were reduced by root interference with both weeds. Common cocklebur and sicklepod leaf area and shoot weight were reduced by root and canopy interference with soybeans. Only common cocklebur root weight decreased when canopies interfered and roots did not. The relationship between light intensity and water uptake per unit leaf area was linear in both years with water uptake proportional to light intensity. In 1991 water uptake response to tight was greater for common cocklebur than for sicklepod. The relationship between soil moisture level and water uptake was logarithmic. Common cocklebur water uptake was two times that of soybean or sicklepod at −2 kPa of pressure potential. In 1991 common cocklebur water uptake decreased at a greater rate than soybean or sicklepod in response to pressure potential changes from −2 to −100 kPa.


Sign in / Sign up

Export Citation Format

Share Document