Development of a Canadian Agricultural Nitrogen Budget (CANB v2.0) model and the evaluation of various policy scenarios

2007 ◽  
Vol 87 (Special Issue) ◽  
pp. 153-165 ◽  
Author(s):  
J Y Yang ◽  
R. De Jong ◽  
C F Drury ◽  
E C Huffman ◽  
V. Kirkwood ◽  
...  

A Canadian Agricultural Nitrogen Budget model was developed to calculate the agro-environmental indicators: Residual soil nitrogen (RSN) and Indicator of Risk of Water Contamination by Nitrogen (IROWC-N) for 3500 polygons of the 1:1 m Soil Landscapes of Canada scale. Residual Soil Nitrogen was calculated for the census years 1981, 1986, 1991, 1996 and 2001. These results were then used in conjunction with climate data to calculate over-winter N loss and its concentration in the drainage water. The main inputs were the acreages, yields and N recommendation rates for major crops, and the types and numbers of livestock. Various coefficients and assumptions were incorporated into the calculations. Validation of the model was carried out using provincial nitrogen sales data, and results showed good agreement between the calculated fertilizer N and the amount of fertilizer N sold in each province in 1996 and 2001. The two indicators were linked to outputs of the economic-based Canadian Regional Agricultural Model in order to assess the impacts of policy scenarios on nitrogen balance. At the national scale, the scenario of improved N fertilization practices reduced the RSN by 13%. RSN was also sensitive to the N2O:N2 ratio resulting from N losses through denitrification. Key words: Landscape nitrogen model, Agri-Environmental Indicator, Soil Landscapes of Canada, Census of Agriculture

2014 ◽  
Vol 94 (2) ◽  
pp. 109-127 ◽  
Author(s):  
Sogol Rasouli ◽  
Joann K. Whalen ◽  
Chandra A. Madramootoo

Rasouli, S., Whalen, J. K. and Madramootoo, C. A. 2014. Review: Reducing residual soil nitrogen losses from agroecosystems for surface water protection in Quebec and Ontario, Canada: Best management practices, policies and perspectives. Can. J. Soil Sci. 94: 109–127. Eutrophication and cyanobacteria blooms, a growing problem in many of Quebec and Ontario's lakes and rivers, are largely attributed to the phosphorus (P) and nitrogen (N) emanating from intensively cropped agricultural fields. In fact, 49% of N loading in surface waters comes from runoff and leaching from fertilized soils and livestock operations. The residual soil nitrogen (RSN), which remains in soil at the end of the growing season, contains soluble and particulate forms of N that are prone to being transported from agricultural fields to waterways. Policies and best management practices (BMPs) to regulate manure storage and restrict fertilizer and manure spreading can help in reducing N losses from agroecosystems. However, reduction of RSN also requires an understanding of the complex interactions between climate, soil type, topography, hydrology and cropping systems. Reducing N losses from agroecosystems can be achieved through careful accounting for all N inputs (e.g., N credits for legumes and manure inputs) in nutrient management plans, including those applied in previous years, as well as the strategic implementation of multiple BMPs and calibrated soil N testing for crops with high N requirements. We conclude that increasing farmer awareness and motivation to implement BMPs will be important in reducing RSN. Programs to promote communication between farmers and researchers, crop advisors and provincial ministries of agriculture and the environment are recommended.


1999 ◽  
Vol 124 (6) ◽  
pp. 719-725 ◽  
Author(s):  
G.A. Picchioni ◽  
Héctor M. Quiroga-Garza

Two greenhouse studies were conducted to trace the fate of fertilizer N in hybrid bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy `Tifgreen'], and to estimate total plant N recovery and losses. The first experiment was performed during winter, with artificial light supplementing natural light to provide a photoperiod of 13.6 to 13.8 hours. The second experiment was conducted during summer and fall under only natural light conditions, with a progressively decreasing photoperiod of 13.7 to 11.1 hours. Urea (UR), ammonium sulfate (AS), and ammonium nitrate (AN) were labeled at 2 atom% 15N, and applied at N rates of 100 or 200 kg·ha-1 for 84 days (divided into six equal fractions and applied every 14 days). Fertilizer N source did not affect total dry matter (DM) accumulation by the plant components, but the high N rate increased clipping DM production under the longer photoperiod. Under the decreasing photoperiod, overall DM production was reduced, and clipping DM production was unaffected by increased N rate. Average N concentration of clippings varied between N sources, ranging from a high of 38.6 g·kg-1 DM with AS to a low of 34.7 g·kg-1 for UR. In Expt. 1, the greatest total plant N recovery [clippings, verdure (shoot material remaining after mowing), and thatch plus roots] occurred with AS (78.5%) and the lowest with UR (65.9%). In Expt. 2, these values declined to 53.0% and 38.0%, respectively. Urea fertilization resulted in the greatest N losses as a fraction of the N applied (33.6% to 61.5%) and AS fertilization the lowest (20.7% to 46.3%). In view of the greater N losses, UR may be a less suitable soluble N source for bermudagrass fertilization within the conditions of this study. In addition, late-season N fertilization may result in a significant waste of fertilizer N as bermudagrass progresses into autumnal dormancy when temperature, photoperiod, and irradiance decline and cause reduction in growth and N uptake.


2020 ◽  
Vol 100 (1) ◽  
pp. 44-57 ◽  
Author(s):  
Chedzer-Clarc Clément ◽  
Athyna N. Cambouris ◽  
Noura Ziadi ◽  
Bernie J. Zebarth ◽  
Antoine Karam

Residual soil NO3-N (RSN) is susceptible to loss during the non-growing season. This 5 yr study investigated the effects of three N fertilizer sources [ammonium nitrate (AN), ammonium sulfate (AS), and polymer-coated urea (PCU)] applied at four rates (60, 120, 200, and 280 kg N ha−1) plus an unfertilized control on RSN following potato production and on overwinter NO3-N changes in an irrigated sandy soil in Quebec, Canada. Composite soil samples were collected at the 0–15, 15–30, 30–60, and 60–90 cm depths immediately after potato harvest in fall and again in the following spring from 2008 to 2012. Residual soil NO3-N content within the 0–30 cm depth (RSN0–30) was highly correlated with the RSN content in the 0–90 cm depth (RSN0–90), indicating that RSN0–30 can be used as an indicator of soil profile NO3-N accumulation. Overall, RSN0–90 increased with fertilizer N application rate, particularly for above the minimum fertilizer N rate required to maximize yield (Nmax), and was generally higher for years with greater pre-plant soil NO3-N. The split application of AN and AS resulted in lower RSN0–90 than the single application of PCU at above Nmax. Overwinter losses of soil NO3-N were generally increased with increasing RSN0–90 in fall. The results suggest that reducing the fertilizer N rate is more important than the choice of N source in managing RSN.


2007 ◽  
Vol 24 (1) ◽  
pp. 89-99 ◽  
Author(s):  
J.Y. Yang ◽  
E.C. Huffman ◽  
R. De Jong ◽  
V. Kirkwood ◽  
K.B. MacDonald ◽  
...  

Author(s):  
Saulius GUŽYS ◽  
Stefanija MISEVIČIENĖ

The use of nitrogen fertilizer is becoming a global problem; however continuous fertilization with nitrogen ensures large and constant harvests. An 8 year research (2006–2013) was conducted to evaluate the relationships between differently fertilized cultivated plant rotations. The research was conducted in Lipliunai (Lithuania) in the agroecosystem with nitrogen metabolism in fields with deeper carbonaceous soil, i.e. Endocalcari Endohypogleyic Cambisol (CMg-n-w-can). The research area covered three drained plots where crop rotation of differently fertilized cereals and perennial grasses was applied. Samples of soil, water and plants were investigated in the Chemical Analysis Laboratory of the Aleksandras Stulginskis University certified by the Environment Ministry of the Republic of Lithuania. The greatest productivity was found in a crop rotation with higher fertilization (N32-140). In crop rotation with lower fertilization (N24-90) productivity of cereals and perennial grasses (N0-80) was 11–35 % lower. The highest amount of mineral soil nitrogen was found in cereal crop rotation with higher fertilization. It was influenced by fertilization and crop productivity. The lowest Nmin and Ntotal concentrations in drainage water were found in grasses crop rotation. Crop rotations of differently fertilized cereals increased nitrogen concentration in drainage water. Nmin concentration in water depended on crop productivity, quantity of mineral soil nitrogen, fertilization, and nitrogen balance. The lowest nitrogen leaching was found in the crop rotation of grasses. Cereal crop rotation increased nitrogen leaching by 12–42 %. The usage of all crop rotations resulted in a negative nitrogen balance, which essentially depended on fertilization with nitrogen fertilizer.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1214
Author(s):  
Hendrik P. J. Smit ◽  
Thorsten Reinsch ◽  
Pieter A. Swanepoel ◽  
Ralf Loges ◽  
Christof Kluß ◽  
...  

Nitrogen fertilization, irrigation and concentrate feeding are important factors in rotational pasture management for dairy farms in South Africa. The extent to which these factors affect environmental efficiency is subject to current and intense debate among scientists. A three-year field study was conducted to investigate the yield response of different N-fertilizer treatments (0 (N0), 220 (N20), 440 (N40), 660 (N60) and 880 (N80) kg N ha−1 year−1) on grazed pastures and to calculate the carbon footprint (CF) of milk produced. Excessive N-fertilization (N60 and N80) did not increase herbage dry matter and energy yields from pastures. However, N80 indicated the highest N-yield but at the same time also the highest N surpluses at field level. A maximum fertilizer rate of 220 kg ha−1 year−1 (in addition to excreted N from grazing animals) appears sufficient to ensure adequate herbage yields (~20 t DM ha−1 year−1) with a slightly positive field-N-balance. This amount will prevent the depletion of soil C and N, with low N losses to the environment, where adequate milk yields of ~17 t ECM ha−1 with a low CF (~1.3 kg CO2 kg ECM−1) are reached. Methane from enteric fermentation (~49% ± 3.3) and N2O (~16% ± 3.2) emissions from irrigated pastures were the main contributors to the CF. A further CF reduction can be achieved by improved N-fertilization planning, low emission irrigation techniques and strategies to limit N2O emissions from pasture soils in South Africa.


1987 ◽  
Vol 67 (4) ◽  
pp. 825-834 ◽  
Author(s):  
M. S. AULAKH ◽  
D. A. RENNIE

The effects of wheat straw incorporation on denitrification, immobilization of N, and C mineralization were investigated at H2O contents of 60, 90 and 120% saturation. Incorporation of increasing levels of straw consistently increased the rate of denitrification for the first 4–8 d, followed by negligible N losses thereafter. In a total period of 96 d, the addition of 1.0% straw increased N losses from 2.5 to 10.1, and from 61.6 to 83.9 μg g−1 in the 60 and 120% water saturation treatments, respectively. The pattern of CO2-C evolved was practically identical to that of the denitrification rate for the initial period when sufficient [Formula: see text] was present. This study has confirmed that in flooded soils, high rates of denitrification will persist only when C is supplied by native or applied organic C sources, provided adequate [Formula: see text] is present. When [Formula: see text] was low, denitrification rates rapidly decreased, even with a sufficient supply of C. Immobilization of fertilizer N (50 μg N g−1 as K15NO3) was very rapid. Around 90% of the total immobilization of applied N occurred within 4 d. Incorporation of 1.0% straw increased the immobilization of fertilizer N from 8.4 to 42.8, and from 1.0 to 7.6% in the 60 and 120% water-saturated treatments, respectively. Remineralization of recently immobilized fertilizer N was observed after 32 d in the 60% saturation treatments only. Key words: Denitrification, wheat straw, mineralization of N


Nitrogen ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 34-51
Author(s):  
Amitava Chatterjee

Nitrogen (N) losses from field crops have raised environmental concerns. This manuscript accompanies a database of N loss studies from non-legume field crops conducted across the conterminous United States. Cumulative N losses through nitrous oxide-denitrification (CN2O), ammonia volatilization (CNH3), and nitrate leaching (CNO3−) during the growing season and associated crop, soil, and water management information were gathered to determine the extent and controls of these losses. This database consisted of 404, 26, and 358 observations of CN2O, CNH3, and CNO3− losses, respectively, from sixty-two peer-reviewed manuscripts. Corn (Zea mays) dominated the N loss studies. Losses ranged between −0.04 to 16.9, 2.50 to 50.9, and 0 to 257 kg N ha−1 for CN2O, CNH3 and CNO3−, respectively. Most CN2O and CNO3− observations were reported from Colorado (n = 100) and Iowa (n = 176), respectively. The highest values of CN2O, and CNO3− were reported from Illinois and Minnesota states, and corn and potato (Solanum tuberosum), respectively. The application of anhydrous NH3 had the highest value of CN2O loss, and ammonium nitrate had the highest CNO3− loss. Among the different placement methods, the injection of fertilizer-N had the highest CN2O loss, whereas the banding of fertilizer-N had the highest CNO3− loss. The maximum CNO3− loss was higher for chisel than no-tillage practice. Both CN2O and CNO3− were positively correlated with fertilizer N application rate and the amount of water input (irrigation and rainfall). Fertilizer-N management strategies to control N loss should consider the spatio-temporal variability of interactions among climate, crop-and soil types.


Sign in / Sign up

Export Citation Format

Share Document