Estimates of direct nitrous oxide emissions from Canadian agroecosystems and their uncertainties

2007 ◽  
Vol 87 (Special Issue) ◽  
pp. 141-152 ◽  
Author(s):  
J J Hutchinson ◽  
B B Grant ◽  
W N Smith ◽  
R L Desjardins ◽  
C A Campbell ◽  
...  

Using a revised Intergovernmental Panel on Climate Change (IPCC) methodology and the process-based model DeNitrification and DeComposition (DNDC), we estimated N2O emissions from agroecosystems in Canada for each census year from 1981 to 2001. Based on the IPCC methodology, direct emissions of N2O ranged from 12.9 to 17.3 with an average of 15.1 Tg CO2 equivalents, while the DNDC model predicted values from 16.0 to 24.3 with an average of 20.8 Tg CO2 equivalents over the same period, and showed a large interannual variation reflecting weather variability. On a provincial basis, emissions estimated by IPCC and DNDC methods were highest in Alberta, Saskatchewan and Ontario, intermediate for Manitoba and Quebec and lowest in British Columbia and the Atlantic provinces. The greatest source of emissions estimated by the IPCC method was from N fertilizer (avg. 6.32 Tg CO2 equiv. in Canada), followed by crop residues (4.24), pasture range and paddocks (PRP) (2.77), and manure (1.65). All sources of emissions, but especially those from fertilizers, increased moderately over time. Monte Carlo Simulation was used to determine the uncertainty associated with the 2001 emission estimates for both IPCC and DNDC methodologies. The simulation generated most likely values of 19.2 and 16.0 Tg CO2 equivalents for IPCC and DNDC, respectively, with uncertainties of 37 and 41%, respectively. Values for the IPCC estimates varied between 28% for PRP and manure and 50% for N fertilizer and crop residues. At the provincial level, uncertainty ranged between 15 and 47% with higher values on the prairies. Sensitivity analyses for IPCC estimates showed crop residues as the most important source of uncertainty followed by synthetic N-fertilizers. Our analysis demonstrated that N2O emissions can be effectively estimated by both the DNDC and IPCC methods and that their uncertainties can be effectively estimated by Monte Carlo Simulation. Key words: Nitrous oxide, IPCC, DNDC model, Uncertainty analysis, Monte Carlo Simulation

2002 ◽  
Vol 82 (3) ◽  
pp. 365-374 ◽  
Author(s):  
W N Smith ◽  
R L Desjardins ◽  
B. Grant ◽  
C. Li ◽  
R. Lemke ◽  
...  

Measured data from two experimental sites in Canada were used to test the ability of the DeNitrification and DeComposition model (DNDC) to predict N2O emissions from agricultural soils. The two sites, one from eastern Canada, and one from western Canada, provided a variety of crops, management practices, soils, and climates for testing the model. At the site in eastern Canada, the magnitude of total seasonal N2O flux from the seven treatments was accurately predicted with a slight average over-prediction (ARE) of 3% and a coefficient of variation of 41%. Nitrous oxide emissions based on International Panel for Climate Change (IPCC) methodology had a relative error of 62% for the seven treatments. The DNDC estimates of total yearly emissions of N2O from the field site in western Canada showed an underestimation of 8% for the footslope landscape position and an overestimation of 46% for the shoulder position. The data input for the DNDC model were not of sufficient detail to characterize the moisture difference between the landscape positions. The estimates from IPCC guidelines showed an underestimation of 54% for the footslope and an overestimation of 161% for the shoulder. The results indicate that the DNDC model was more accurate than IPCC methodology at estimating N2O emissions at both sites. Key words: Nitrous oxide, DNDC, soil model, greenhouse gas, testing


2020 ◽  
Vol 82 (6) ◽  
pp. 1025-1030
Author(s):  
Maxence Plouviez ◽  
Benoit Guieysse

Abstract Microalgae can synthesise the ozone depleting pollutant and greenhouse gas nitrous oxide (N2O). Consequently, significant N2O emissions have been recorded during real wastewater treatment in high rate algal ponds (HRAPs). While data scarcity and variability prevent meaningful assessment, the magnitude reported (0.13–0.57% of the influent nitrogen load) is within the range reported by the Intergovernmental Panel on Climate Change (IPCC) for direct N2O emissions during centralised aerobic wastewater treatment (0.016–4.5% of the influent nitrogen load). Critically, the ability of microalgae to synthesise N2O challenges the IPCC's broad view that bacterial denitrification and nitrification are the only major cause of N2O emissions from wastewater plants and aquatic environments receiving nitrogen from wastewater effluents. Significant N2O emissions have indeed been repeatedly detected from eutrophic water bodies and wastewater discharge contributes to eutrophication via the release of nitrogen and phosphorus. Considering the complex interplays between nitrogen and phosphorus supply, microalgal growth, and microalgal N2O synthesis, further research must urgently seek to better quantify N2O emissions from microalgae-based wastewater systems and eutrophic ecosystems receiving wastewater. This future research will ultimately improve the prediction of N2O emissions from wastewater treatment in national inventories and may therefore affect the prioritisation of mitigation strategies.


2020 ◽  
Vol 117 (22) ◽  
pp. 11954-11960 ◽  
Author(s):  
Simon Yang ◽  
Bonnie X. Chang ◽  
Mark J. Warner ◽  
Thomas S. Weber ◽  
Annie M. Bourbonnais ◽  
...  

Assessment of the global budget of the greenhouse gas nitrous oxide (N2O) is limited by poor knowledge of the oceanicN2O flux to the atmosphere, of which the magnitude, spatial distribution, and temporal variability remain highly uncertain. Here, we reconstruct climatologicalN2O emissions from the ocean by training a supervised learning algorithm with over 158,000N2O measurements from the surface ocean—the largest synthesis to date. The reconstruction captures observed latitudinal gradients and coastal hot spots ofN2O flux and reveals a vigorous global seasonal cycle. We estimate an annual meanN2O flux of 4.2 ± 1.0 Tg N⋅y−1, 64% of which occurs in the tropics, and 20% in coastal upwelling systems that occupy less than 3% of the ocean area. ThisN2O flux ranges from a low of 3.3 ± 1.3 Tg N⋅y−1in the boreal spring to a high of 5.5 ± 2.0 Tg N⋅y−1in the boreal summer. Much of the seasonal variations in globalN2O emissions can be traced to seasonal upwelling in the tropical ocean and winter mixing in the Southern Ocean. The dominant contribution to seasonality by productive, low-oxygen tropical upwelling systems (>75%) suggests a sensitivity of the globalN2O flux to El Niño–Southern Oscillation and anthropogenic stratification of the low latitude ocean. This ocean flux estimate is consistent with the range adopted by the Intergovernmental Panel on Climate Change, but reduces its uncertainty by more than fivefold, enabling more precise determination of other terms in the atmosphericN2O budget.


2020 ◽  
Vol 10 (2) ◽  
pp. 472 ◽  
Author(s):  
Amir Mahdiyar ◽  
Danial Jahed Armaghani ◽  
Mohammadreza Koopialipoor ◽  
Ahmadreza Hedayat ◽  
Arham Abdullah ◽  
...  

Peak particle velocity (PPV) is a critical parameter for the evaluation of the impact of blasting operations on nearby structures and buildings. Accurate estimation of the amount of PPV resulting from a blasting operation and its comparison with the allowable ranges is an integral part of blasting design. In this study, four quarry sites in Malaysia were considered, and the PPV was simulated using gene expression programming (GEP) and Monte Carlo simulation techniques. Data from 149 blasting operations were gathered, and as a result of this study, a PPV predictive model was developed using GEP to be used in the simulation. In order to ensure that all of the combinations of input variables were considered, 10,000 iterations were performed, considering the correlations among the input variables. The simulation results demonstrate that the minimum and maximum PPV amounts were 1.13 mm/s and 34.58 mm/s, respectively. Two types of sensitivity analyses were performed to determine the sensitivity of the PPV results based on the effective variables. In addition, this study proposes a method specific to the four case studies, and presents an approach which could be readily applied to similar applications with different conditions.


2021 ◽  
Vol 152 ◽  
pp. 108057
Author(s):  
Pedro Vitor Ferrari Machado ◽  
Richard E. Farrell ◽  
Gordon Bell ◽  
Caio J. Taveira ◽  
Katelyn A. Congreves ◽  
...  

2015 ◽  
Vol 206 ◽  
pp. 71-83 ◽  
Author(s):  
Kingsley Chinyere Uzoma ◽  
Ward Smith ◽  
Brian Grant ◽  
Raymond L. Desjardins ◽  
Xiaopeng Gao ◽  
...  

2022 ◽  
Vol 9 ◽  
Author(s):  
Sarah Köbke ◽  
Hongxing He ◽  
Matthias Böldt ◽  
Haitao Wang ◽  
Mehmet Senbayram ◽  
...  

Oilseed rape (Brassica napus L.) is an important bioenergy crop that contributes to the diversification of renewable energy supply and mitigation of fossil fuel CO2 emissions. Typical oilseed rape crop management includes the use of nitrogen (N) fertilizer and the incorporation of oilseed rape straw into soil after harvest. However, both management options risk increasing soil emissions of nitrous oxide (N2O). The aim of this 2-years field experiment was to identify the regulating factors of N cycling with emphasis on N2O emissions during the post-harvest period. As well as the N2O emission rates, soil ammonia (NH4+) and nitrate (NO3−) contents, crop residue and seed yield were also measured. Treatments included variation of fertilizer (non-fertilized, 90 and 180 kg N ha−1) and residue management (straw remaining, straw removal). Measured N2O emission data showed large intra- and inter-annual variations ranging from 0.5 (No-fert + str) to 1.0 kg N2O-N ha−1 (Fert-180 + str) in 2013 and from 4.1 (Fert-90 + str) to 7.3 kg N2O-N ha−1 (No-fert + str) in 2014. Cumulative N2O emissions showed that straw incorporation led to no difference or slightly reduced N2O emissions compared with treatments with straw removal, while N fertilization has no effect on post-harvest N2O emissions. A process-based model, CoupModel, was used to explain the large annual variation of N2O after calibration with measured environmental data. Both modeled and measured data suggest that soil water-filled pore space and temperature were the key factors controlling post-harvest N2O emissions, even though the model seemed to show a higher N2O response to the N fertilizer levels than our measured data. We conclude that straw incorporation in oilseed rape cropping is environmentally beneficial for mitigating N2O losses. The revealed importance of climate in regulating the emissions implies the value of multi-year measurements. Future studies should focus on new management practices to mitigate detrimental effects caused by global warming, for example by using cover crops.


2008 ◽  
Vol 88 (2) ◽  
pp. 219-227 ◽  
Author(s):  
D L Burton ◽  
Xinhui Li ◽  
C A Grant

Fertilizer nitrogen use is estimated to be a significant source of nitrous oxide (N2O) emissions in western Canada. These estimates are based primarily on modeled data, as there are relatively few studies that provide direct measures of the magnitude of N2O emissions and the influence of N source on N2O emissions. This study examined the influence of nitrogen source (urea, coated urea, urea with urease inhibitor, and anhydrous ammonia), time of application (spring, fall) and method of application (broadcast, banded) on nitrous oxide emissions on two Black Chernozemic soils located near Winnipeg and Brandon Manitoba. The results of this 3-yr study demonstrated consistently that the rate of fertilizer-induced N2O emissions under Manitoba conditions was lower than the emissions estimated using Intergovernmental Panel on Climate Change (IPCC) coefficients. The Winnipeg site tended to have higher overall N2O emissions (1.7 kg N ha-1) and fertilizer-induced emissions (~0.8% of applied N) than did the Brandon site (0.5 kg N ha-1), representing ~0.2% of applied N. N2O emissions in the first year of the study were much higher than in subsequent years. Both the site and year effects likely reflected differences in annual precipitation. The N2O emissions associated with the use of anhydrous ammonia as a fertilizer source were no greater than emissions with urea. Fall application of nitrogen fertilizer tended to result in marginally greater N2O emissions than did spring application, but these differences were neither large nor consistent. Key words: Nitrogen fertilizer, nitrous oxide emissions, nitrate intensity, anhydrous ammonia, urea


2013 ◽  
Vol 19 (10) ◽  
pp. 2999-3010 ◽  
Author(s):  
Zhongjie Yu ◽  
Huanguang Deng ◽  
Dongqi Wang ◽  
Mingwu Ye ◽  
Yongjie Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document