scholarly journals Lifting Divisors on a Generic Chain of Loops

2015 ◽  
Vol 58 (2) ◽  
pp. 250-262 ◽  
Author(s):  
Dustin Cartwright ◽  
David Jensen ◽  
Sam Payne
Keyword(s):  

AbstractLet C be a curve over a complete valued field having an infinite residue field and whose skeleton is a chain of loops with generic edge lengths. We prove that any divisor on the chain of loops that is rational over the value group lifts to a divisor of the same rank on C, confirming a conjecture of Cools, Draisma, Robeva, and the third author.

Genetics ◽  
1984 ◽  
Vol 108 (3) ◽  
pp. 707-718
Author(s):  
Prasad R K Koduru

ABSTRACT The orientation behavior of chain forming interchange quadrivalents at metaphase I was studied in three interchange heterozygotes of pearl millet [Pennisetum americanum (L.) Leeke] which involve chromosomes 1, 3, 6 and 7 in various combinations. Of these, two combinations predominantly produced rings and the third was a chain-forming type. The chain quadrivalents derived from the two ring-forming interchanges, as well as the chain quadrivalent generated by the third interchange, all showed one adjacent orientation at metaphase I (adjacent-1 or -2, depending upon the formation or failure of chiasmata and their positions in the different segments of the pachytene cross). Homologous centromere co-orientation leading to adjacent-1 and alternate-1 occurs following chiasma failure in the noncentric arms of the pachytene cross, and nonhomologous centromere co-orientation leading to adjacent-2 and alternate-2 occurs following chiasma failure in the centric arms of the pachytene cross. Thus, it has been proposed that, unlike in ring quadrivalents, a specific chain quadrivalent will have only homologous or nonhomologous centromere co-orientations at metaphase I.


2016 ◽  
Vol 81 (2) ◽  
pp. 400-416
Author(s):  
SYLVY ANSCOMBE ◽  
FRANZ-VIKTOR KUHLMANN

AbstractWe extend the characterization of extremal valued fields given in [2] to the missing case of valued fields of mixed characteristic with perfect residue field. This leads to a complete characterization of the tame valued fields that are extremal. The key to the proof is a model theoretic result about tame valued fields in mixed characteristic. Further, we prove that in an extremal valued field of finitep-degree, the images of all additive polynomials have the optimal approximation property. This fact can be used to improve the axiom system that is suggested in [8] for the elementary theory of Laurent series fields over finite fields. Finally we give examples that demonstrate the problems we are facing when we try to characterize the extremal valued fields with imperfect residue fields. To this end, we describe several ways of constructing extremal valued fields; in particular, we show that in every ℵ1saturated valued field the valuation is a composition of extremal valuations of rank 1.


2000 ◽  
Vol 56 (2) ◽  
pp. 273-286 ◽  
Author(s):  
Brian O'Leary ◽  
Trevor R. Spalding ◽  
George Ferguson ◽  
Christopher Glidewell

The structure of 1,1,3,3,5,5-hexaphenyltrisiloxane-1,5-diol–pyrazine (4/1), (C36H32O4Si3)4·C4H4N2 (1), contains finite centrosymmetric aggregates; the diol units form dimers, by means of O—H...O hydrogen bonds, and pairs of such dimers are linked to the pyrazine by means of O—H...N hydrogen bonds. In 1,1,3,3,5,5-hexaphenyltrisiloxane-1,5-diol–pyridine (2/3), (C36H32O4Si3)2·(C5H5N)3 (2), the diol units are linked into centrosymmetric pairs by means of disordered O—H...O hydrogen bonds: two of the three pyridine molecules are linked to the diol dimer by means of ordered O—H...N hydrogen bonds, while the third pyridine unit, which is disordered across a centre of inversion, links the diol dimers into a C 3 3(9) chain by means of O—H...N and C—H...O hydrogen bonds. In 1,1,3,3-tetraphenyldisiloxane-1,3-diol–hexamethylenetetramine (1/1), (C24H22O3Si2)·C6H12N4 (3), the diol acts as a double donor and the hexamethylenetetramine acts as a double acceptor in ordered O—H...N hydrogen bonds and the structure consists of C 2 2(10) chains of alternating diol and amine units. In 1,1,3,3-tetraphenyldisiloxane-1,3-diol–2,2′-bipyridyl (1/1), C24H22O3Si2·C10H8N2 (4), there are two independent diol molecules, both lying across centres of inversion and therefore both containing linear Si—O—Si groups: each diol acts as a double donor of hydrogen bonds and the unique 2,2′-bipyridyl molecule acts as a double acceptor, thus forming C 2 2(11) chains of alternating diol and amine units. The structural motif in 1,1,3,3-tetraphenyldisiloxane-1,3-diol–pyrazine (2/1), (C24H22O3Si2)2·C4H4N2 (5), is a chain-of-rings: pairs of diol molecules are linked by O—H...O hydrogen bonds into centrosymmetric R 2 2(12) dimers and these dimers are linked into C 2 2(13) chains by means of O—H...N hydrogen bonds to the pyrazine units. 1,1,3,3-Tetraphenyldisiloxane-1,3-diol–pyridine (1/1), C24H22O3Si2·C5H5N (6), and 1,1,3,3-tetraphenyldisiloxane-1,3-diol–pyrimidine (1/1), C24H22O3Si2·C4H4N2 (7), are isomorphous: in each compound the amine unit is disordered across a centre of inversion. The diol molecules form C(6) chains, by means of disordered O—H...O hydrogen bonds, and these chains are linked into two-dimensional nets built from R 6 6(26) rings, by a combination of O—H...N and C—H...O hydrogen bonds.


2013 ◽  
Vol 1521 ◽  
Author(s):  
Adarsh Shekhar ◽  
Weiqiang Wang ◽  
Richard Clark ◽  
Rajiv K. Kalia ◽  
Aiichiro Nakano ◽  
...  

ABSTRACTMultimillion-atom molecular dynamics simulations are used to investigate burning behavior of a chain of three alumina-coated aluminum nanoparticles (ANPs), where particles one and three are heated above the melting temperature of pure aluminum. The mode and mechanism behind the heat and mass transfer from the hot ANPs (particles one and three) to the middle, cold ANP (particle two) are studied. The hot nanoparticles oxidize first, after which hot Al atoms penetrate into the cold nanoparticle. It is also found that due to the penetration of hot Al atoms, the cold nanoparticle oxidizes at a faster rate than in the initially heated nanoparticles. The calculated speed of penetration is found to be 54 m/s, which is within the range of experimentally measured flame propagation rates. As the atoms penetrate into the central ANP, they maintain their relative positions. The atoms from the shell of the central ANP form the first layer, which is followed by the atoms from the shell of the outer ANP making the second layer and lastly the atoms from the core of the outer ANPs form the third layer. In addition to heating the central ANP by convection, the ejected hot Al atoms from the outer ANPs initiate exothermic oxidation reactions inside the central ANP, leading to further heating within the central ANP. During 1 ns, all three ANPs fuse together, forming a single ellipsoidal aggregate.


2015 ◽  
Vol 20 (1) ◽  
pp. 59-72 ◽  
Author(s):  
Dean G. Pruitt

Except when there is substantial third-party pressure for settlement, participants in intractable conflict will only enter negotiation if they are motivated to end the conflict and optimistic about negotiation’s chances of success. The sources of such optimism are explored using case material from three intractable interethnic conflicts that were ultimately resolved by negotiation. In all three cases, optimism developed during prenegotiation communication between the parties. Also there were two main channels of communication, each channel providing credibility to the other and serving as a back-up if the other failed. In two of the cases the communication was face-to-face and friendly, but in the third it was distant and mediated by a chain of two intermediaries. A possible reason for this difference is that the parties were positively interdependent in the first two cases but not in the third. The paper concludes with a summary of three psychological experiments that demonstrate the impact of positive vs. negative interdependence.


2015 ◽  
Vol 80 (1) ◽  
pp. 85-99 ◽  
Author(s):  
FRANZISKA JAHNKE ◽  
JOCHEN KOENIGSMANN

AbstractIn this note we investigate the question when a henselian valued field carries a nontrivial ∅-definable henselian valuation (in the language of rings). This is clearly not possible when the field is either separably or real closed, and, by the work of Prestel and Ziegler, there are further examples of henselian valued fields which do not admit a ∅-definable nontrivial henselian valuation. We give conditions on the residue field which ensure the existence of a parameter-free definition. In particular, we show that a henselian valued field admits a nontrivial henselian ∅-definable valuation when the residue field is separably closed or sufficiently nonhenselian, or when the absolute Galois group of the (residue) field is nonuniversal.


1991 ◽  
Vol 56 (3) ◽  
pp. 853-861
Author(s):  
Françoise Delon et Danielle Gondard

AbstractA chain-closed field is defined as a chainable field (i.e. a real field such that, for all n ∈ N, ΣK2n+2 ≠ ΣK2n) which does not admit any “faithful” algebraic extension, and can also be seen as a field having a Henselian valuation ν such that the residue field K/ν is real closed and the value group νK is odd divisible with ∣νK/2νK∣ = 2. If K admits only one such valuation, we show that f ∈ K(X) is in ΣK(X)2n for any real algebraic extension L of K,“f(L) ⊆ ΣL2n” holds. The conclusion is also true for K = R((t))(a chainable but not chain-closed field), and in the case n = 1 it holds for several variables and any real field K.


Author(s):  
Zdzisław Kuksewicz

Abstract Giles of Orleans' philosophy evolved from an orthodox Christian interpretation of Aristotle to an Averroism; and his successive commentaries testify to this evolution: De generatione version I, De generatione version II, Physics version I and Physics version II. The first work presents orthodox Christian solutions, the second and the third testify to some Averroistic influences and the last is a clearly Averroistic commentary. Giles did not obey the regulation of 1272 which forbade the masters of the facilitas artium to discuss theological problems. De generatione I discusses the question of world history as a chain of eternal reversions and solves it according to Christian orthodoxy. De generatione II and Physics I put forward the question whether accidents can exist without substance. The first work cites amply the Aristotelian solution and tries to reconcile it with a Christian understanding of the problem, whereas the second commentary accepts the opinion of Thomas Aquinas. In De generatione II and Physics II, Giles inquires whether an annihilated substance can reappear. The first commentary cites <Aristotelian> arguments for the negative answer, but it also gives a short declaratio fidei. The second commentary cites an <Aristotelian> and an orthodox solution, stating that one can solve the problem on two different planes - Christian or philosophical, both offering a different solution and unable to be reconciled. All three questions are listed in Tempier's Condemnation of 1277 - propositions 92, 196 and 215 - censuring heterodox answers.


1990 ◽  
Vol 55 (3) ◽  
pp. 1125-1129 ◽  
Author(s):  
Johan Pas

In [10] we introduced a new first order language for valued fields. This language has three sorts of variables, namely variables for elements of the valued field, variables for elements of the residue field and variables for elements of the value group. contains symbols for the standard field, residue field, and value group operations and a function symbol for the valuation. Essential in our language is a function symbol for an angular component map modulo P, which is a map from the field to the residue field (see Definition 1.2).For this language we proved a quantifier elimination theorem for Henselian valued fields of equicharacteristic zero which possess such an angular component map modulo P [10, Theorem 4.1]. In the first section of this paper we give some partial results on the existence of an angular component map modulo P on an arbitrary valued field.By applying the above quantifier elimination theorem to ultraproducts ΠQp/D, we obtained a quantifier elimination, in the language , for the p-adic field Qp; and this elimination is uniform for almost all primes p [10, Corollary 4.3]. In §2 we prove that our language is essentially stronger than the natural language for p-adic fields in the sense that the angular component map modulo P cannot be defined, uniformly for almost all p, in terms of the natural language for p-adic fields.


2010 ◽  
Vol 75 (3) ◽  
pp. 1007-1034 ◽  
Author(s):  
Luc Bélair ◽  
Françoise Point

AbstractWe consider valued fields with a distinguished isometry or contractive derivation as valued modules over the Ore ring of difference operators. Under certain assumptions on the residue field, we prove quantifier elimination first in the pure module language, then in that language augmented with a chain of additive subgroups, and finally in a two-sorted language with a valuation map. We apply quantifier elimination to prove that these structures do not have the independence property.


Sign in / Sign up

Export Citation Format

Share Document