scholarly journals Molecular mechanisms of cancer cell-cell interactions

2012 ◽  
Vol 6 (4) ◽  
pp. 344-345 ◽  
Author(s):  
Susann M. Brady-Kalnay
2020 ◽  
Author(s):  
M Tran ◽  
S Yoon ◽  
ST Min ◽  
S Andersen ◽  
K Devitt ◽  
...  

AbstractThe ability to study cancer-immune cell communication across the whole tumor section without tissue dissociation is important to understand molecular mechanisms of cancer immunotherapy and drug targets. Current experimental methods such as immunohistochemistry allow researchers to investigate a small number of cells or a limited number of ligand-receptor pairs at tissue scale with limited cellular resolution. In this work, we developed a powerful experimental and analytical pipeline that allows for the genome-wide discovery and targeted validation of cellular communication. By profiling thousands of genes, spatial transcriptomic and single-cell RNA sequencing data show genes that are possibly involved in interactions. The expression of the candidate genes could be visualized by single-molecule in situ hybridization and droplet digital PCR. We developed a computational pipeline called STRISH that enables us to quantitatively model cell-cell interactions by automatically scanning for local expression of RNAscope data to recapitulate an interaction landscape across the whole tissue. Furthermore, we showed the strong correlation of microscopic RNAscope imaging data analyzed by STRISH with the gene expression values measured by droplet digital PCR. We validated the unique ability of this approach to discover new cell-cell interactions in situ through analysis of two types of cancer, basal cell carcinoma and squamous cell carcinoma. We expect that the approach described here will help to discover and validate ligand receptor interactions in different biological contexts such as immune-cancer cell interactions within a tumor.


2020 ◽  
Author(s):  
Simon van Vliet ◽  
Christoph Hauert ◽  
Martin Ackermann ◽  
Alma Dal Co

AbstractInteractions between cells drive biological processes across all of life, from microbes in the environment to cells in multicellular organisms. Interactions often arise in spatially structured settings, where cells mostly interact with their neighbors. A central question is how the properties of biological systems emerge from local interactions. This question is very relevant in the context of microbial communities, such as biofilms, where cells live close by in space and are connected via a dense network of biochemical interactions. To understand and control the functioning of these communities, it is essential to uncover how community-level properties, such as the community composition, spatial arrangement, and growth rate, arise from these interactions. Here, we develop a mathematical framework that can predict community-level properties from the molecular mechanisms underlying the cell-cell interactions for systems consisting of two cell types. Our predictions match quantitative measurements from an experimental cross-feeding community. For these cross-feeding communities, the community growth rate is reduced when cells interact only with few neighbors; as a result, some communities can co-exist in a well-mixed system, but not in a spatial one. In general, our framework shows that key molecular parameters underlying the cell-cell interactions (e.g. the uptake and leakage rates of molecules) determine community level properties. Our framework can be extended to a variety of systems of two interacting cell types, within and beyond the microbial world, and contributes to our understanding of how biological functions arise from interactions between single cells.


2019 ◽  
Vol 316 (2) ◽  
pp. C264-C273 ◽  
Author(s):  
Annachiara Mitrugno ◽  
Samuel Tassi Yunga ◽  
Joanna L. Sylman ◽  
Jevgenia Zilberman-Rudenko ◽  
Toshiaki Shirai ◽  
...  

Cancer-associated thrombosis is a common first presenting sign of malignancy and is currently the second leading cause of death in cancer patients after their malignancy. However, the molecular mechanisms underlying cancer-associated thrombosis remain undefined. In this study, we aimed to develop a better understanding of how cancer cells affect the coagulation cascade and platelet activation to induce a prothrombotic phenotype. Our results show that colon cancer cells trigger platelet activation in a manner dependent on cancer cell tissue factor (TF) expression, thrombin generation, activation of the protease-activated receptor 4 (PAR4) on platelets and consequent release of ADP and thromboxane A2. Platelet-colon cancer cell interactions potentiated the release of platelet-derived extracellular vesicles (EVs) rather than cancer cell-derived EVs. Our data show that single colon cancer cells were capable of recruiting and activating platelets and generating fibrin in plasma under shear flow. Finally, in a retrospective analysis of colon cancer patients, we found that the number of venous thromboembolism events was 4.5 times higher in colon cancer patients than in a control population. In conclusion, our data suggest that platelet-cancer cell interactions and perhaps platelet procoagulant EVs may contribute to the prothrombotic phenotype of colon cancer patients. Our work may provide rationale for targeting platelet-cancer cell interactions with PAR4 antagonists together with aspirin and/or ADP receptor antagonists as a potential intervention to limit cancer-associated thrombosis, balancing safety with efficacy.


2013 ◽  
Vol 201 (3) ◽  
pp. 467-484 ◽  
Author(s):  
Nami Sugiyama ◽  
Erika Gucciardo ◽  
Olga Tatti ◽  
Markku Varjosalo ◽  
Marko Hyytiäinen ◽  
...  

Changes in EphA2 signaling can affect cancer cell–cell communication and motility through effects on actomyosin contractility. However, the underlying cell–surface interactions and molecular mechanisms of how EphA2 mediates these effects have remained unclear. We demonstrate here that EphA2 and membrane-anchored membrane type-1 matrix metalloproteinase (MT1-MMP) were selectively up-regulated and coexpressed in invasive breast carcinoma cells, where, upon physical interaction in same cell–surface complexes, MT1-MMP cleaved EphA2 at its Fibronectin type-III domain 1. This cleavage, coupled with EphA2-dependent Src activation, triggered intracellular EphA2 translocation, as well as an increase in RhoA activity and cell junction disassembly, which suggests an overall repulsive effect between cells. Consistent with this, cleavage-prone EphA2-D359I mutant shifted breast carcinoma cell invasion from collective to rounded single-cell invasion within collagen and in vivo. Up-regulated MT1-MMP also codistributed with intracellular EphA2 in invasive cells within human breast carcinomas. These results reveal a new proteolytic regulatory mechanism of cell–cell signaling in cancer invasion.


Author(s):  
Themistoklis Zisis ◽  
David B. Brückner ◽  
Tom Brandstätter ◽  
Wei Xiong Siow ◽  
Joseph d’Alessandro ◽  
...  

2007 ◽  
Vol 2 (S 1) ◽  
Author(s):  
I Lukic ◽  
S Stoyanov ◽  
A Erhardt ◽  
P Nawroth ◽  
A Bierhaus

Sign in / Sign up

Export Citation Format

Share Document