scholarly journals High-Fat Diet Alters the Orosensory Sensitivity to Fatty Acids in Obesity-Resistant but not Obesity-Prone Rats

2014 ◽  
Vol 09 (02) ◽  
Author(s):  
Pittman DW Hansen DR
Keyword(s):  
2021 ◽  
Author(s):  
Xiaodan Lu ◽  
Rongbin Zhong ◽  
Ling Hu ◽  
Luyao Huang ◽  
Lijiao Chen ◽  
...  

Abstract Large yellow croaker roe phospholipids (LYCRPLs) has great nutritional value because of containing rich docosahexaenoic acid (DHA), which is a kind of n-3 polyunsaturated fatty acids (n-3 PUFAs). In...


2017 ◽  
Vol 152 (5) ◽  
pp. S418
Author(s):  
Yuki Hirata ◽  
Shinji Fukuda ◽  
Kazuhiko Yamada ◽  
Kazuhide Higuchi ◽  
Yuki I. Kawamura ◽  
...  

2020 ◽  
Vol 11 (4) ◽  
pp. 347-359
Author(s):  
D. Valent ◽  
L. Arroyo ◽  
E. Fàbrega ◽  
M. Font-i-Furnols ◽  
M. Rodríguez-Palmero ◽  
...  

The pig is a valuable animal model to study obesity in humans due to the physiological similarity between humans and pigs in terms of digestive and associated metabolic processes. The dietary use of vegetal protein, probiotics and omega-3 fatty acids is recommended to control weight gain and to fight obesity-associated metabolic disorders. Likewise, there are recent reports on their beneficial effects on brain functions. The hypothalamus is the central part of the brain that regulates food intake by means of the production of food intake-regulatory hypothalamic neuropeptides, as neuropeptide Y (NPY), orexin A and pro-opiomelanocortin (POMC), and neurotransmitters, such as dopamine and serotonin. Other mesolimbic areas, such as the hippocampus, are also involved in the control of food intake. In this study, the effect of a high fat diet (HFD) alone or supplemented with these additives on brain neuropeptides and neurotransmitters was assessed in forty-three young pigs fed for 10 weeks with a control diet (T1), a high fat diet (HFD, T2), and HFD with vegetal protein supplemented with Bifidobacterium breve CECT8242 alone (T3) or in combination with omega-3 fatty acids (T4). A HFD provoked changes in regulatory neuropeptides and 3,4-dihydroxyphenylacetic acid (DOPAC) in the hypothalamus and alterations mostly in the dopaminergic system in the ventral hippocampus. Supplementation of the HFD with B. breve CECT8242, especially in combination with omega-3 fatty acids, was able to partially reverse the effects of HFD. Correlations between productive and neurochemical parameters supported these findings. These results confirm that pigs are an appropriate animal model alternative to rodents for the study of the effects of HFD on weight gain and obesity. Furthermore, they indicate the potential benefits of probiotics and omega-3 fatty acids on brain function.


2003 ◽  
Vol 90 (2) ◽  
pp. 329-336 ◽  
Author(s):  
Anja Schou Lindman ◽  
Hanne Müller ◽  
Ingebjørg Seljeflot ◽  
Hans Prydz ◽  
Marit Veierød ◽  
...  

Dietary fat influences plasma levels of coagulation factor VII (FVII) and serum phospholipids (PL). It is, however, unknown if the fat-mediated changes in FVII are linked to PL. The present study aimed to investigate the effects of dietary fat on fasting and postprandial levels of activated FVII (FVIIa), FVII coagulant activity (FVIIc), FVII protein (FVIIag) and choline-containing PL (PC). In a randomized single-blinded crossover-designed study a high-fat diet (HSAFA), a low-fat diet (LSAFA), both rich in saturated fatty acids, and a high-fat diet rich in unsaturated fatty acids (HUFA) were consumed for 3 weeks. Twenty-five healthy females, in which postprandial responses were studied in a subset of twelve, were included. The HSAFA diet resulted in higher levels of fasting FVIIa and PC compared with the LSAFA and the HUFA diets (all comparisonsP≤0·01). The fasting PC levels after the LSAFA diet were also higher than after the HUFA diet (P<0·001). Postprandial levels of FVIIa and PC were highest on the HSAFA diet and different from LSAFA and HUFA (all comparisonsP≤0·05). Postprandial FVIIa was higher on the HUFA compared with the LSAFA diet (P<0·03), whereas the HUFA diet resulted in lower postprandial levels of PC than the LSAFA diet (P<0·001). Significant correlations between fasting levels of PC and FVIIc were found on all diets, whereas FVIIag was correlated to PC on the HSAFA and HUFA diet. The present results indicate that dietary fat, both quality and quantity, influences fasting and postprandial levels of FVIIa and PC. Although significant associations between fasting FVII and PC levels were found, our results do not support the assumption that postprandial FVII activation is linked to serum PC.


2011 ◽  
Vol 49 (5) ◽  
pp. 1129-1140 ◽  
Author(s):  
Mohamed A. El-Moselhy ◽  
Ashraf Taye ◽  
Sara Shaaban Sharkawi ◽  
Suzan F.I. El-Sisi ◽  
Ahmed Fahmy Ahmed

2012 ◽  
Vol 51 (3) ◽  
pp. 163-169 ◽  
Author(s):  
Wataru Motomura ◽  
Takayuki Yoshizaki ◽  
Nobuhiko Takahashi ◽  
Shima Kumei ◽  
Yusuke Mizukami ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 980 ◽  
Author(s):  
Yu-Tang Tung ◽  
Yi-Ju Hsu ◽  
Yi-Wen Chien ◽  
Chi-Chang Huang ◽  
Wen-Ching Huang ◽  
...  

Menopause is associated with changes in body composition (a decline in lean body mass and an increase in total fat mass), leading to an increased risk of metabolic syndrome, nonalcoholic fatty liver disease, and heart disease. A healthy diet to control body weight is an effective strategy for preventing and treating menopause-related metabolic syndromes. In the present study, we investigated the effect of long-term feeding of edible oils (soybean oil (SO), tea seed oil (TO), and lard oil (LO)) on female ovariectomized (OVX) mice. SO, TO, and LO comprise mainly polyunsaturated fatty acids (PUFA), monounsaturated fatty acids (MUFA), and saturated fatty acids (SFA), respectively. However, there have been quite limited studies to investigate the effects of different fatty acids (PUFA, MUFA, and SFA) on physiological adaption and metabolic homeostasis in a menopausal population. In this study, 7-week-old female Institute of Cancer Research (ICR) mice underwent either bilateral laparotomy (sham group, n = 8) or bilateral oophorectomy (OVX groups, n = 24). The OVX mice given a high-fat diet (HFD) were randomly divided into three groups: OVX+SO, OVX+TO, and OVX+LO. An HFD rich in SO, TO, or LO was given to the OVX mice for 12 weeks. Our findings revealed that the body weight and relative tissues of UFP (uterus fatty peripheral) and total fat (TF) were significantly decreased in the OVX+TO group compared with those in the OVX+SO and OVX+LO groups. However, no significant difference in body weight or in the relative tissues of UFP and TF was noted among the OVX+SO and OVX+LO groups. Furthermore, mice given an HFD rich in TO exhibited significantly decreased accumulation of liver lipid droplets and adipocyte sizes of UFP and brown adipose tissue (BAT) compared with those given an HFD rich in SO or LO. Moreover, replacing SO or LO with TO significantly increased oral glucose tolerance. Additionally, TO improved endurance performance and exhibited antifatigue activity by lowering ammonia, blood urea nitrogen, and creatine kinase levels. Thus, tea seed oil (TO) rich in MUFA could prevent obesity, reduce physical fatigue, and improve exercise performance compared with either SO (PUFA)- or LO(SFA)-rich diets in this HFD-induced obese OVX mice model.


2016 ◽  
Vol 36 (7) ◽  
pp. 742-750 ◽  
Author(s):  
Yang Wang ◽  
Peter Dellatore ◽  
Veronique Douard ◽  
Ling Qin ◽  
Malcolm Watford ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document