scholarly journals Effects of Supervised Short-Term Exercise Training On Cardiorespiratory Control and Exercise Capacity in Type 2 Diabetes Patients

2014 ◽  
Vol 05 (08) ◽  
Author(s):  
Tobias Duennwald
2020 ◽  
Vol 98 (6) ◽  
pp. 400-411 ◽  
Author(s):  
Hacene Bouras ◽  
Sara R. Roig ◽  
Steef Kurstjens ◽  
Cees J.J. Tack ◽  
Mohamed Kebieche ◽  
...  

Metformin therapy is associated with lower serum magnesium (Mg2+) levels in type 2 diabetes patients. The TRPM6 channel determines the fine-tuning of Mg2+ (re)absorption in intestine and kidney. Therefore, we aimed to investigate the short- and long-term effects of metformin on TRPM6. Patch clamp recordings and biotinylation assays were performed upon 1 h of incubation with metformin in TRPM6-transfected HEK293 cells. Additionally, 24 h of treatment of mDCT15 kidney and hCaco-2 colon cells with metformin was applied to measure the effects on endogenous TRPM6 expression by quantitative real-time PCR. To assess Mg2+ absorption, 25Mg2+ uptake measurements were performed using inductively coupled plasma mass spectrometry. Short-term effects of metformin significantly increased TRPM6 activity and its cell surface trafficking. In contrast, long-term effects significantly decreased TRPM6 mRNA expression and 25Mg2+ uptake. Metformin lowered TRPM6 mRNA levels independently of insulin- and AMPK-mediated pathways. Moreover, in type 2 diabetes patients, metformin therapy was associated with lower plasma Mg2+ concentrations and fractional excretion of Mg2+. Thereby, short-term metformin treatment increases TRPM6 activity explained by enhanced cell surface expression. Conversely, long-term metformin treatment results in downregulation of TRPM6 gene expression in intestine and kidney cells. This long-term effect translated in an inverse correlation between metformin and plasma Mg2+ concentration in type 2 diabetes patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Seyedeh Hoda Seyedizadeh ◽  
Sadegh Cheragh-Birjandi ◽  
Mohammad Reza Hamedi Nia

Diabetic peripheral neuropathy is one of the most common chronic complications of diabetics which causes nerve damage and muscle strength decrease in patients. This in turn results in imbalance leading to the diabetic patients’ daily activity disparity. The present investigation was conducted to specifically study the effects of combined training (resistance-aerobic) on serum kinesin-1 and physical function in type 2 diabetes patients with diabetic peripheral neuropathy. 24 diabetic neuropathic females were randomly to be selected out and divided into two experimental and control groups. The experimental group received resistance-aerobic training for 3 sessions during eight weeks. The exercise training included resistance exercises with 2-3 sets, 6-7 exercise stations, 8-12 repetitions (reps), and 3-5 minutes of rest in between the exercises, and the aerobic exercises contained 50-65% of heart rate reserve (HRR) for 3 minutes with 30 seconds of rest interval between sets and 5-10 repetitions. Results show that the serum kinesin-1 level and aerobic endurance declined after eight weeks of combined (resistance-aerobic) exercise training, but this decrease was not significant. The upper body strength increased but it was not significant, while the lower body showed a significant strength increase. With regard to the progressive nature of diabetic peripheral neuropathy, it seems that even the little changes resulting from the combined exercise training can be useful. Nevertheless, more research is required in this area.


2008 ◽  
Vol 115 (9) ◽  
pp. 273-281 ◽  
Author(s):  
Matthew D. Hordern ◽  
Louise M. Cooney ◽  
Elaine M. Beller ◽  
Johannes B. Prins ◽  
Thomas H. Marwick ◽  
...  

The aim of the present study was to determine the effects of a 4-week exercise training intervention on blood glucose, insulin sensitivity, BMI (body mass index) and cardiorespiratory fitness in patients with Type 2 diabetes, and to identify and establish criteria for patients who are more likely to improve their blood glucose from short-term exercise training. A randomized, controlled trial of exercise training, comprising two supervised and one non-supervised sessions of individualized cardiorespiratory and resistance exercise per week, was performed in 132 healthy patients with Type 2 diabetes (exercise training group, n=68), with the aim of accumulating a minimum of 150 min of moderate-intensity exercise for 4 weeks. BMI, waist circumference, blood pressure, blood lipid profile, blood glucose, insulin, insulin sensitivity [calculated by HOMAIR (homoeostasis model assessment of insulin resistance) and QUICKI (quantitative insulin check index)], β-cell function (calculated by HOMAβ-Cell), HbA1c (glycated haemoglobin) and V̇O2max (maximal oxygen consumption) were measured at baseline and at 4 weeks. The exercise training group had significant improvements in V̇O2max, BMI and triacylglycerols (triglycerides). There were no significant changes in blood glucose, HOMAIR, QUICKI or HOMAβ-Cell. Decreases in blood glucose were significantly predicted by baseline blood glucose and HbA1c, with these variables accounting for 15.9% of the change in blood glucose (P<0.001). ROC (receiver operator characteristic) curve analysis revealed that patients with a blood glucose >8.85 mmol/l (sensitivity=73%, specificity=78%) and HbA1c >7.15% (sensitivity=79%, specificity=60%) were more likely to achieve a clinically significant decrease in blood glucose. In conclusion, in apparently healthy patients with Type 2 diabetes, a 4-week exercise intervention improved cardiorespiratory fitness, BMI and triacylglycerols. Elevated blood glucose and HbA1c predicted improvements in blood glucose.


2008 ◽  
Vol 158 (2) ◽  
pp. 163-172 ◽  
Author(s):  
S F E Praet ◽  
R A M Jonkers ◽  
G Schep ◽  
C D A Stehouwer ◽  
H Kuipers ◽  
...  

ObjectiveTo determine the feasibility and the benefits of combined resistance and interval exercise training on phenotype characteristics and skeletal muscle function in deconditioned, type 2 diabetes (T2D) patients with polyneuropathy.DesignShort-term, single-arm intervention trial.MethodsEleven male T2D patients (age: 59.1±7.5 years; body mass index: 32.2±4.0 kg/m2) performed progressive resistance and interval exercise training thrice a week for 10 weeks. Besides primary diabetes outcome measures, muscle strength (MUST), maximal workload capacity (Wmax), whole-body peak oxygen uptake (VO2peak) and muscle oxidative capacity (MUOX), intramyocellular lipid (IMCL) and glycogen (IMCG) storage, and systemic inflammation markers were determined before and after training. Daily exogenous insulin requirements (EIR) and historic individualized EIR were gathered and analysed.ResultsMUST and Wmax increased with 17% (90% confidence intervals 9–24%) and 14% (6–21) respectively. Furthermore, mean arterial blood pressure declined with 5.5 mmHg (−9.7 to −1.4). EIR dropped with 5.0 IU/d (−11.5 to 1.5) compared with baseline. A decline of respectively −0.7 mmol/l (−2.9 to 1.5) and −147 μmol/l (−296 to 2) in fasting plasma glucose and non-esterified fatty acids concentrations were observed following the intervention, but these were not accompanied by changes in VO2peak, MUOX, IMCL or IMCG, and blood glycolysated haemoglobin, adiponectin, tumor necrosis factor-α and/or cholesterol concentrations.ConclusionShort-term resistance and interval exercise training is feasible in deconditioned T2D patients with polyneuropathy and accompanied by moderate improvements in muscle function and blood pressure. Such a specific exercise regimen may provide a better framework for future exercise intervention programmes in the treatment of deconditioned T2D patients.


Diabetes ◽  
2009 ◽  
Vol 58 (6) ◽  
pp. 1333-1341 ◽  
Author(s):  
G. Kacerovsky-Bielesz ◽  
M. Chmelik ◽  
C. Ling ◽  
R. Pokan ◽  
J. Szendroedi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document