scholarly journals Experiment Investigation and Optimization for Slider Bonding Process to Enhance the Shear Strength of Epoxy Adhesive Joint

2021 ◽  
Vol 25 (9) ◽  
pp. 33-43
Author(s):  
Santi Pumkrachang ◽  
Krisada Asawarungsaengkul ◽  
Parames Chutima
2016 ◽  
Vol 93 (9) ◽  
pp. 657-666 ◽  
Author(s):  
Binhua Wang ◽  
Yuxuan Bai ◽  
Xiaozhi Hu ◽  
Pengmin Lu

Author(s):  
Santi Pumkrachang

The ultraviolet (UV) curing of slider-suspension attachment is going to change from a manual to an automated process. As a result, the bonding parameters of adhesive between slider and suspension needs to be optimized. This paper aims to study two output responses of the UV curable epoxy adhesive i.e., shear strength force and pitch static attitude (PSA) of the joint between slider and suspension in a head gimbal assembly (HGA). Four process parameters were investigated using response surface methodology (RSM) based on face-centered central composite design (FCCD). The RSM was applied to establish a mathematical model to correlate the significance of process parameters and the responses. Then the based multi-objective was applied to determine a quadratic model and obtained the output maximization at 224 g of shear strength force and PSA value close to the target at 1.8 degrees. The input process parameters were optimized at 0.7 s of UV bottom cure time, 120 °C of UV dual side temperature, 5.0 s of UV dual side cure time, and 230 μm of adhesive dot size. The validation experiment showed a prediction response error of less than 7% of the actual value.


2020 ◽  
Vol 864 ◽  
pp. 228-240
Author(s):  
Andrii Kondratiev ◽  
Oksana Prontsevych ◽  
Tetyana Nabokina

Adhesive sandwich structures with the honeycomb core of the metallic foil, polymeric papers and composites are widely and effectively used in the units of aerospace engineering and in the other industries owing to a number of undeniable advantages, including high specific strength and stiffness. In the process of designing and manufacturing of abovementioned structures, it is necessary to ensure high strength and reliability of the adhesive joint of the bearing skins and honeycomb core at a small area of their contact. The decisive factors influencing the bearing capacity of such joint are the technological parameters of the bonding process. Using the finite element modeling, the paper deals with the bearing capacity of the adhesive joint of bearing skins with the honeycomb core based on the aluminium foil and polymeric paper Nomex at transversal tearing for the key factors of the bonding process. The pattern of the adhesive joint failure (on the adhesive of honeycombs) has been revealed, depending on the depth of penetration of honeycombs ends in the adhesive, physical and mechanical characteristics of honeycombs, modulus of elasticity and tearing strength of the adhesive and thickness of the adhesive layer. Peculiar features of behavior of adhesive joints of the bearing skins with the honeycomb core based on the aluminium foil and polymeric paper Nomex under the load have been established, which should be taken into account in designing and manufacturing of honeycomb structures. The recommendations are given with regard to choosing of parameters of the process of honeycomb structure bonding, which allow providing with the acceptable accuracy the optimal depth of penetration of ends of the honeycomb core faces in the adhesive layer of specified depth.


Author(s):  
Shinji Kobayashi ◽  
Eiichi Ide ◽  
Shinji Angata ◽  
Akio Hirose ◽  
Kojiro F. Kobayashi

A novel bonding process using Ag metallo-organic nanoparticles has been proposed. This process is applicable to the alternative to the current high temperature solders, such as Pb-10Sn or Pb-20Sn. In this paper, Al, Ti, Ni, Cu, Ag and Au disc joints were made using the Ag metallo-organic nanoparticles in order to investigate the bondability of the various metals. These joints were evaluated based on the measurement of the shear strength, and the observation of the fracture surfaces and the cross-sectional microstructures. The shear strength of various metal joints increased in the following order: Al, Ti, Ni, Cu, Ag and Au joints. This corresponds to the order of the standard free energy value of the oxide formation for each metal. This result suggests that the carbon atoms generated by the decomposition of the organic shell of the Ag metallo-organic nanoparticles may play a role in deoxidizing the oxide film on the metal surface.


Author(s):  
Vladimír Válek

In this paper “Environment influence on the solidity of the adhesive joint” I have dealt with the utilization of the bonding metals and practising experimental laboratory tests of adhesive joints depending on different laboratory environments and anticorrosive protection of the samples.For this laboratory tests I have chosen a universal adhesive. It is a two-component epoxy adhesive with suitable conditions for bonding metals. The samples were made from steel and were produced by the standard ČSN EN 1465. After the bonding and the cure procedure the samples were exposed in H20 environment for exact intervals (parts of the samples were painted by anticorrosive painting). After the exposition I have examinated the solidity of the adhesive joint in shearing stress on the measuring instrument Zwick 050. The samples were compared with etalon that were exposed to no environment.Results of the particular measuring were described into the graphs and were recorded the break down maximum force. When the samples were broken down I have taken a photo of it, which is in the appendix.


2014 ◽  
Vol 606 ◽  
pp. 165-169
Author(s):  
Mohd Afendi ◽  
Ku Hafizan ◽  
M.S. Abdul Majid ◽  
R. Daud ◽  
N.A.M. Amin ◽  
...  

In this study, the effect of bond thickness upon shear strength and fracture toughness of epoxy adhesively bonded joint with dissimilar adherents was addressed. The bond thickness, t between the adherents was controlled to be ranged between 0.1 mm and 1.2 mm. Finite element analyses were also executed by commercial ANSYS 11 code to investigate the stress distributions within the adhesive layer of adhesive joint. As a result, shear strength of adhesive joint reduces with increasing bond thickness. The strength of shear adhesive joint was also depended on elastic modulus of adherent. Moreover, the failure of dissimilar adherents bonded shear joint originated at a location with critical stress-y which was the interface corner of ALYH75/epoxy. In the case of shear adhesive joint with an interface crack, the fracture also occurred at the ALYH75/epoxy interface even in the steel-adhesive-aluminum (SEA) specimens. Fracture toughness, Jc of aluminum-adhesive-steel (AES) joints was similar to those of SES and demonstrates strong dependency upon bond thickness. Furthermore, the interface crack in SEA specimen has relatively large fracture resistance if compared to those in AES specimen. Finally, Kc fracture criterion was found to be appropriate for shear adhesive joints associated with adhesive fracture.


Author(s):  
Takuya Kamino ◽  
Takashi Fujimoto ◽  
Takashi Yamaguchi ◽  
Yasumoto Aoki ◽  
Shinsuke Akamatsu ◽  
...  

<p>As a repair for corrosion damage of a steel bridge, a patch plate-repair using high strength bolts is generally applied. This method requires the surface of the damaged corroded part filled with an epoxy adhesive flat. The load transferring mechanism and slip resistance of such a combined joint with adhesives and high strength frictional bolts aren't clear. Since the shear strength of an adhesive might be increased due to constraint by the bolt axial force, the combined joint's slip resistance would be increased. To clarify the mechanical properties of the combined joint and to propose a new design method for such joints, two experiments have been conducted. The first was a frictional force experiment for adhesive specimens subjected to contact pressure on the surface to evaluate the constraint effect of adhesive on shear strength quantitatively. The last one is a slippage experiment for the combined joints to evaluate its slip coefficient.</p>


2011 ◽  
Vol 2011 (0) ◽  
pp. _G030075-1-_G030075-5
Author(s):  
Toru Nakajima ◽  
Masashi MAEDA ◽  
Tokuo TERAMOTO

Sign in / Sign up

Export Citation Format

Share Document