The Effect of Green Tea on the Oxidative Stress and Blood Glucose Level of Diabetic Rats

2007 ◽  
Vol 14 (3) ◽  
pp. 3-11 ◽  
Author(s):  
Mohammed Badawoud ◽  
Samar Al-Saggaf ◽  
Magda Hagrasi
2010 ◽  
Vol 5 (2) ◽  
pp. 87
Author(s):  
Rusman Efendi ◽  
Evy Damayanthi ◽  
Lilik Kustiyah ◽  
Nastiti Kusumorini

<p class="MsoNormal" style="margin: 0cm 7.1pt 6pt 14.2pt; text-align: justify; text-indent: 1cm;"><span style="font-size: 10pt;">Diabetes mellitus is degeneratif disease with high prevalence that happens in many countries. Several studies had been done to control diabetes by using green tea, mullberry leaf  tea, and their mixture. The aim of this research was to analyze the influence of the administration green tea, mullbery leaf tea, and their mixtures to blood glucose level of diabetic rats both during 120 minutes after administration. This research had four phases, first to determine the best mullberry leaf tea, second to fourth phases respectively, determine turnover of blood glucose level on normal rats; attempt during 120 minutes on diabetic rats.  The result of research during 120 minutes have showed that blood glucose level on diabetic rats which were administered by green tea, mullberry leaf tea and their mixture is significantly difference with diabetic rats which were administered by water. Blood glucose level at baseline increased at 30<sup>th </sup>minutes and showed the difference significantly and then until 60<sup>th</sup> and 120<sup>th</sup> minutes and relatively stable. During 120 minutes after feed consumption, inhibition of blood glucose level occured increasingly on diabetic rats which were administered by green tea, mullberry leaf tea, and their mixture compared to diabetic rats which were administered by water.</span></p>


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Olubanke O. Ogunlana ◽  
Babatunde O. Adetuyi ◽  
Miracle Rotimi ◽  
lohor Esalomi ◽  
Alaba Adeyemi ◽  
...  

Abstract Background Diabetes, a global cause of mortality in developing countries is a chronic disorder affecting the metabolism of macromolecules and has been attributed to the defective production and action of insulin characterized by persistent hyperglycemic properties. This global disorder harms organs of the body such as the liver, kidney and spleen. Medicinal plants such as Hunteria umbellate have been shown to possess hypoglycemic, antioxidative and anti-diabetic properties owing to the high concentration of active phytochemical constituents like flavonoids and alkaloids. The present study seeks to evaluate the hypoglycemic activities of ethanolic seed extract of Hunteria umbellate on streptozotocin-induced diabetes rats. Methods Thirty (30) female experimental rats were randomly divided into five groups with six rats per group and were administered streptozotocin (STZ) and Hunteria umbellate as follows. Group 1 served as control and was given only distilled water, group 2 rats were administered 60 mg/kg STZ; Group 3 was administered 60 mg/kg STZ and 100 mg/kg metformin; group 4 rats were administered 60 mg/kg STZ and 800 mg/kg Hunteria umbellate, group 5 rats 60 mg/kg STZ and 400 mg/kg Hunteria umbellate. The fasting blood glucose level of each rat was measured before sacrifice. Rats were then sacrificed 24 h after the last dose of treatment. Results The results showed that Hunteria umbellate significantly reversed STZ-induced increase in fasting blood glucose and increase in body and organs weight of rats. Hunteria umbellate significantly reversed STZ-induced decrease in antioxidant enzyme in liver, kidney and spleen of rats. Hunteria umbellate significantly reversed STZ-induced increase in oxidative stress markers in liver, kidney and spleen of rats. Conclusion Collectively, our results provide convincing information that inhibition of oxidative stress and regulation of blood glucose level are major mechanisms through which Hunteria umbellate protects against streptozotocin-induced diabketes rats.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Sachin L. Badole ◽  
Swapnil M. Chaudhari ◽  
Ganesh B. Jangam ◽  
Amit D. Kandhare ◽  
Subhash L. Bodhankar

Pongamia pinnata(L.) Pierre has been used in traditional medicine for the treatment for diabetes and metabolic disorder. The aim of this study was to investigate the effect of petroleum ether extract of the stem bark ofP. pinnata(known as PPSB-PEE) on cardiomyopathy in diabetic rats. Diabetes was induced in overnight fasted Sprague-Dawley rats by using injection of streptozotocin (55 mg/kg, i.p.). Nicotinamide (100 mg/kg, i.p.) was administered 20 min before administration of streptozotocin. Rats were divided into group I: nondiabetic, group II: diabetic control (tween 80, 2%; 10 mL/kg, p.o.) as vehicle, and group III: PPSB-PEE (100 mg/kg, p.o.). The blood glucose level, ECG, hemodynamic parameters, cardiotoxic and antioxidant biomarkers, and histology of heart were carried out after 4 months after STZ with nicotinamide injection. PPSB-PEE treatment improved the electrocardiographic, hemodynamic changes; LV contractile function; biological markers; oxidative stress parameters; and histological changes in STZ induced diabetic rats. PPSB-PEE (100 mg/kg, p.o.) decreased blood glucose level, improved electrocardiographic parameters (QRS, QT, and QTc intervals) and hemodynamic parameters (SBP, DBP, EDP, maxdP/dt, contractility index, and heart rate), controlled levels of cardiac biomarkers (CK-MB, LDH, and AST), and improved oxidative stress (SOD, MDA, and GSH) in diabetic rats. PPSB-PEE is a promising remedy against cardiomyopathy in diabetic rats.


Author(s):  
Khulood Saadoon Salim

In recent years,green tea and ginger have become a subject of interest because of their beneficial effects on human health. The aim of the present study was to compare the effect of long term administration of green tea and ginger each alone to the effect of their combination on blood glucose level in streptozotocin-induced diabetic rats. Method: A group of 50 male albino rats was divided into five groups (10 rats each group). The normal control group( NC) administered tap water, other animals were injected by streptozotocin 45mg/Kg body weight intraperitonially to induce diabetes mellitus and then divided into four groups ,diabetic control (DC) without treatment, diabetic group administered green tea extract for four weeks (DGT), diabetic group administered ginger extract for four weeks(DGI), and diabetic group administered mixture of green tea and ginger for four weeks (DGG), then we compare the blood glucose level at 1st,2nd,3rd, and 4th week of experiment. Results:We observed that in groups whose water drink was substituted by green tea and ginger extract, the blood glucose level was significantly( p less than 0.05) reduced as compared to diabetic animals. Importantly, we observed that blood glucose level was near control level when green tea was administered simultaneously with ginger extract.Conclusion: Combination of green tea and ginger may be of great value as hypoglycemic agent in diabetic patients, the synergism of their effect on glucose regulation process is underlying this results.


2019 ◽  
Vol 8 (2) ◽  
Author(s):  
Hardoko Hardoko ◽  
Binti Nafi’ah ◽  
Bambang B. Sasmito ◽  
Yuniwaty Halim

Green tea Camellia sinensis contains polyphenol that has antidiabetic activity.  Mangrove leaves also contain polyphenol which potentially gives these leave antidiabetic activity. The aim of this research was to determine the ability of herbal green tea extract from white mangrove (Avicennia marina) leaves to decrease blood glucose level of diabetic Wistar rats (Rattus novergicus). The method used was experimental and involved giving a herbal green tea extract from white mangrove leaves with concentration of 100, 200 and 300 mg/200g BW/day, and positive control, i.e. glybenclamid (0.09 mg/200 g BW/day), to diabetic rats injected with Streptozotocin (STZ) and Nicotinamide (NA). The rats were observed on day 0, 5, 10 and 15. The results showed that the herbal green tea extract from white mangrove leaves decreased the blood glucose level of diabetic rats. The effective extract dose that decreased the blood glucose level of diabetic rats was 300 mg/200 g BW, which is comparable to the effect produced by glybenclamid (antidiabetic medicine). This dose could decrease the blood glucose level of diabetic rats to reach a normal blood glucose level after 20 days.


2020 ◽  
Vol 11 (4) ◽  
pp. 5067-5070
Author(s):  
Pang Jyh Chayng ◽  
Nurul Ain ◽  
Kaswandi Md Ambia ◽  
Rahim Md Noah

The purpose of this project is to study the anti-diabetic effect of on a diabetic rat model. A total of Twenty male Sprague rats were used and it randomly distributed into four groups which are Group I: , Group II: negative control, Group III: and Group IV: and . In diabetic model were induced with via injection at the dosage of 65mg/kg. and FBG (Fasting Blood Glucose) level of diabetic rats were assessed every three days. Blood was collected via cardiac puncture at day 21 after the induction of treatment. Insulin level of the rats was assessed with the Mercodia Rat Insulin ELISA kit. FBG level of group I (12.16 ±3.96, p&lt;0.05) and group IV (11.34 ±3.67, p&lt;0.05) were significantly decreased. Meanwhile, the for all rats did not show any significant increase. However, the insulin level was escalated in group IV (0.74+0.25, p&lt;0.05) significantly. The present study shows that the and the combination of and lowered blood glucose level and enhanced insulin secretion.


Author(s):  
Soni .

Background: Diabetes increases the risk of macrovascular complications and is often associated with angina in patient. Currently nicorandil, a potassium channel opener is being frequently used for the prevention and long-term treatment of angina pectoris. Glibenclamide exerts its antidiabetic action by closing the ATP sensitive potassium channels. Simultaneous use of nicorandil may antagonizes this action and may worsens the existing diabetes. To evaluate the pharmacodynamic interaction present study has been taken to study the effect of Nicorandil, a potassium channel opener on blood glucose level of alloxan induced diabetic rats and its pharmacodynamics interaction with Glibenclamide.Methods: Albino rats, weighing 150-200gm of male sex were used for the study. Diabetes was induced by injecting alloxan monohydrate 2% solution intra peritoneally in a dose of 150mg/kg body weight. Animal with Fasting Blood Sugar level between 250-300g/dl was selected for study and they were divided into 4 groups of 5 animals each. Group I- serving as control received 0.5ml normal saline orally for 28 days. Group II was given glibenclamide (0.5mg/kg body wt) for 28 days. Group III was treated orally with nicorandil (0.3mg/kg body wt) for 28 days. Group IV was given glibenclamide (0.5mg/kg) and nicorandil (0.3mg/kg) for 28 days. Fasting Blood Sugar level was recorded in all rats on 1st,3rd,7th,14th,21st and 28th day of the treatments.Results: results showed that glibenclamide significantly reduce blood sugar level (p <0.05) Wherase nicorandil showed rise in blood glucose level (p <0.05) While the combination (glibenclamide + nicorandil) showed rise in blood glucose (p <0.05) overall.Conclusions: Nicorandil worsen the existing diabetes and to be avoided or replaced with alternative drug in case of diabetes being treated with sulfonyl urease group of drugs.


Author(s):  
I. Iwanegbe ◽  
M. Suleiman ◽  
A. Jimah

Aims: To investigate the effect of food blends (plantain, soybean and ginger) on the blood glucose, lipid profile and haematological indices on streptozotocin induced diabetic rats. Methodology: A total of 35 rats of mean body weight 219.07 g separated into7 groups (5 per group) where induced by a single intraperitoneal (I.P) injection of streptozotocin (0.1 g dissolved in 5 ml of freshly prepared sodium citrate buffer 0.1 M, pH 4.5) at a dose of 40 mg/kg body weight after fasting for 12 hours and fed with flours/blends. The flours were produced from plant materials for different treatments/blends (blend A=100% unripe plantain, B=80% unripe plantain, 14% soybean, 6% ginger, C=70% unripe plantain, 26% soybean, 4% ginger, D= 60% unripe plantain, 38% soybean, 2% ginger, E= 50% unripe plantain, 50% soybean) and the phytochemicals and minerals content were determined. Blood glucose was determined at 5 days interval for 25 days. Diabetes was confirmed in rats with blood glucose concentrations >200 mg/dl. After 25 days rats were anaesthetized with chloroform vapour and blood samples collected by cardiac puncture for haematology and lipid profile determination. Results: The results showed that unripe plantain, soya beans and ginger in adequate proportion(C=70% unripe plantain, 26% soybean, 4% ginger or D= 60% unripe plantain, 38% soybean, 2% ginger) could help to reduce blood glucose, improve haematological parameters and lipid profile. Significant reduction was observed in the blood glucose level of rats fed blends C and D from 286 to 85 mg/dl and 307 to 90 mg/dl respectively at the end of experiment. These results also demonstrated that the inclusion of ginger at 6% causes rise in blood glucose level. Total cholesterol (TC) increased in all the blends. However, the lowest concentration of TC was observed in blends C and D. The highest packed cell volume (60%) and Haemoglobin (20 g/dl) level observed in rats fed blend C was significantly higher than the normal control fed conventional feeds. The increase in packed cell volume (PCV) (50%) and Hb (17 g/dl) in diabetic rats demonstrated that the formulated blend C was able to raise PCV and Hb above 50% and 17 g/dl (Normal control NC) respectively. Significant increase (P<0.05) in low density lipoprotein cholesterol (LDLc) was also observed in all the blends with blend C having the least (4.0 mg/dl) close to NC (2.0 mg/dl). Conclusion: From the results it is evident that blend C will manage and improve the health status of diabetic patients.


Author(s):  
Pooja Pooja ◽  
Mazumder Avijit ◽  
Soumya Das

Diabetes is a chronic disease which characterized by hyperglycemia (elevated or abnormally high blood sugar levels) and other metabolic disturbances, including metabolism of lipids and haemostasis. Caesalpinia pulcherrima has previously showed strong anti-diabetic and hepatoprotective potential. The present research work was to investigate the anti-diabetic activity and hepatoprotective activity Caesalpinia pulcherrima in streptozotocin-induced (STZ) diabetic rats. The dose-dependent effects of 45days oral treatment with methanol extract of plant (200 and 300mg/kg) of CPAE on body weight, blood glucose level, total protein, albumin, liver marker enzymes and carbohydrate metabolizing enzymes were evaluated in STZ-induced diabetic rats. Oral administration methanolic extract of Caesalpinia pulcherrima of showed significant restoration of the body weight and decrease in the blood glucose level, liver marker enzymes (ALT, AST ALP) and carbohydrate metabolizing enzymes were observed in diabetic rats. These results suggest that fruit extract of Caesalpinia pulcherrima has valuable anti-diabetic activity in STZ-induced diabetic rats which is comparable to the standard drug metformin and hence might be of use in the management of diabetes.


Sign in / Sign up

Export Citation Format

Share Document