scholarly journals 10-min resolution time series (2018 - 2020) of stream water and near-stream groundwater levels at two Mediterranean catchments located in northeastern Spain: the sub-humid Font del Regàs and the semi-arid Fuirosos

2020 ◽  
Vol 24 (12) ◽  
pp. 5713-5744
Author(s):  
Daniel Beiter ◽  
Markus Weiler ◽  
Theresa Blume

Abstract. Hillslope–stream connectivity controls runoff generation, during events and during baseflow conditions. However, assessing subsurface connectivity is a challenging task, as it occurs in the hidden subsurface domain where water flow can not be easily observed. We therefore investigated if the results of a joint analysis of rainfall event responses of near-stream groundwater levels and stream water levels could serve as a viable proxy for hillslope–stream connectivity. The analysis focuses on the extent of response, correlations, lag times and synchronicity. As a first step, a new data analysis scheme was developed, separating the aspects of (a) response timing and (b) extent of water level change. This provides new perspectives on the relationship between groundwater and stream responses. In a second step we investigated if this analysis can give an indication of hillslope–stream connectivity at the catchment scale. Stream water levels and groundwater levels were measured at five different hillslopes over 5 to 6 years. Using a new detection algorithm, we extracted 706 rainfall response events for subsequent analysis. Carrying out this analysis in two different geological regions (schist and marls) allowed us to test the usefulness of the proxy under different hydrological settings while also providing insight into the geologically driven differences in response behaviour. For rainfall events with low initial groundwater level, groundwater level responses often lag behind the stream with respect to the start of rise and the time of peak. This lag disappears at high antecedent groundwater levels. At low groundwater levels the relationship between groundwater and stream water level responses to rainfall are highly variable, while at high groundwater levels, above a certain threshold, this relationship tends to become more uniform. The same threshold was able to predict increased likelihood for high runoff coefficients, indicating a strong increase in connectivity once the groundwater level threshold was surpassed. The joint analysis of shallow near-stream groundwater and stream water levels provided information on the presence or absence and to a certain extent also on the degree of subsurface hillslope–stream connectivity. The underlying threshold processes were interpreted as transmissivity feedback in the marls and fill-and-spill in the schist. The value of these measurements is high; however, time series of several years and a large number of events are necessary to produce representative results. We also find that locally measured thresholds in groundwater levels can provide insight into the connectivity and event response of the corresponding headwater catchments. If the location of the well is chosen wisely, a single time series of shallow groundwater can indicate if the catchment is in a state of high or low connectivity.


2020 ◽  
Author(s):  
Daniel Beiter ◽  
Markus Weiler ◽  
Theresa Blume

Abstract. Hillslope-stream connectivity controls runoff generation, both during events and baseflow conditions. However, assessing subsurface connectivity is a challenging task, as it occurs in the hidden subsurface domain where water flow cannot be easily observed. We therefore investigated if the results of a joint analysis of rainfall event responses of near-stream groundwater levels and stream water levels could serve as a viable proxy for hillslope-stream connectivity. The analysis focuses on the extent of response, correlations, lag times and synchronicity. A newly developed data analysis scheme of separating the aspects of (a) response timing and (b) extent of water level change provides new perspectives on the relationship between groundwater and stream responses. In a second step we investigated if this analysis can give an indication of hillslope-stream connectivity at the catchment scale. Stream- and groundwater levels were measured at five different hillslopes over 5 to 6 years. Using a new detection algorithm we extracted 706 rainfall response events for subsequent analysis. Carrying out this analysis in two different geological regions (schist and marls) allowed us to test the usefulness of the proxy under different hydrological settings while also providing insight into the geologically-driven differences in response behaviour. For rainfall events with low initial groundwater level, groundwater level responses often lag behind the stream with respect to the start of rise and the time of peak. This lag disappears at high antecedent groundwater levels. At low groundwater levels the relationship between groundwater and stream water level responses to rainfall are highly variable, while at high groundwater levels, above a certain threshold, this relationship tends to become more uniform. The same threshold was able to predict increased likelihood for high runoff coefficients, indicating a strong increase in connectivity once the groundwater level threshold was surpassed. The joint analysis of shallow near-stream groundwater and stream water levels provided information on the presence or absence and to a certain extent also on the degree of subsurface hillslope-stream connectivity. The underlying threshold processes were interpreted as transmissivity feedback in the marls and fill-and-spill in the schist. The value of these measurements is high, however, time series of several years and a large number of events are necessary to produce representative results. We also find that locally measured thresholds in groundwater levels can provide insight into catchment-scale connectivity and event response. If the location of the well is chosen wisely, a single time series of shallow groundwater can indicate if the catchment is in a state of high or low connectivity.


2021 ◽  
Vol 13 (4) ◽  
pp. 702
Author(s):  
Mustafa Kemal Emil ◽  
Mohamed Sultan ◽  
Khaled Alakhras ◽  
Guzalay Sataer ◽  
Sabreen Gozi ◽  
...  

Over the past few decades the country of Qatar has been one of the fastest growing economies in the Middle East; it has witnessed a rapid increase in its population, growth of its urban centers, and development of its natural resources. These anthropogenic activities compounded with natural forcings (e.g., climate change) will most likely introduce environmental effects that should be assessed. In this manuscript, we identify and assess one of these effects, namely, ground deformation over the entire country of Qatar. We use the Small Baseline Subset (SBAS) InSAR time series approach in conjunction with ALOS Palsar-1 (January 2007 to March 2011) and Sentinel-1 (March 2017 to December 2019) synthetic aperture radar (SAR) datasets to assess ground deformation and conduct spatial and temporal correlations between the observed deformation with relevant datasets to identify the controlling factors. The findings indicate: (1) the deformation products revealed areas of subsidence and uplift with high vertical velocities of up to 35 mm/yr; (2) the deformation rates were consistent with those extracted from the continuously operating reference GPS stations of Qatar; (3) many inland and coastal sabkhas (salt flats) showed evidence for uplift (up to 35 mm/yr) due to the continuous evaporation of the saline waters within the sabkhas and the deposition of the evaporites in the surficial and near-surficial sabkha sediments; (4) the increased precipitation during Sentinel-1 period compared to the ALOS Palsar-1 period led to a rise in groundwater levels and an increase in the areas occupied by surface water within the sabkhas, which in turn increased the rate of deposition of the evaporitic sediments; (5) high subsidence rates (up to 14 mm/yr) were detected over landfills and dumpsites, caused by mechanical compaction and biochemical processes; and (6) the deformation rates over areas surrounding known sinkhole locations were low (+/−2 mm/yr). We suggest that this study can pave the way to similar countrywide studies over the remaining Arabian Peninsula countries and to the development of a ground motion monitoring system for the entire Arabian Peninsula.


Author(s):  
Leonardo A. Hardtke ◽  
Paula D. Blanco ◽  
Héctor F.del Valle ◽  
Graciela I. Metternicht ◽  
Walter F. Sione

2013 ◽  
Vol 10 (6) ◽  
pp. 3849-3868 ◽  
Author(s):  
J. L. J. Ledesma ◽  
T. Grabs ◽  
M. N. Futter ◽  
K. H. Bishop ◽  
H. Laudon ◽  
...  

Abstract. Riparian zones (RZ) are a major factor controlling water chemistry in forest streams. Base cations' (BC) concentrations, fluxes, and cycling in the RZ merit attention because a changing climate and increased forest harvesting could have negative consequences, including re-acidification, for boreal surface waters. We present a two-year study of BC and silica (Si) flow-weighted concentrations from 13 RZ and 14 streams in different landscape elements of a boreal catchment in northern Sweden. The spatial variation in BC and Si dynamics in both RZ and streams was explained by differences in landscape element type, with highest concentrations in silty sediments and lowest concentrations in peat-dominated wetland areas. Temporal stability in BC and Si concentrations in riparian soil water, remarkably stable Mg/Ca ratios, and homogeneous mineralogy suggest that patterns found in the RZ are a result of a distinct mineralogical upslope signal in groundwater. Stream water Mg/Ca ratios indicate that the signal is subsequently maintained in the streams. Flow-weighted concentrations of Ca, Mg, and Na in headwater streams were represented by the corresponding concentrations in the RZ, which were estimated using the Riparian Flow-Concentration Integration Model (RIM) approach. Stream and RZ flow-weighted concentrations differed for K and Si, suggesting a stronger biogeochemical influence on these elements, including K recirculation by vegetation and retention of Si within the RZ. Potential increases in groundwater levels linked to forest harvesting or changes in precipitation regimes would tend to reduce BC concentrations from RZ to streams, potentially leading to episodic acidification.


2018 ◽  
Vol 1 ◽  
Author(s):  
Sanda Iepure ◽  
Nicolas Gouin ◽  
Angeline Bertin ◽  
Ana Camacho ◽  
Antonio González-Ramón ◽  
...  

Chile has large extensions of arid and semi-arid regions throughout the whole country, where the intensive demands and use of water resources, especially groundwater for irrigations and mining activities, increased dramatically over the last decades. The aquifer depletions due to water abstraction for irrigation and nutrient loads, exert major alterations of water quality, groundwater recharge and the natural renewal rate. All these factors diminish the aquifer value for the users and contribute to the degradation of groundwater as environment and habitat for fauna. This intensive use of groundwater resources in Chile brought to significant social and economic benefits, but their inadequate management resulted in negative environmental, legal and socioeconomic consequences. In this study, we aimed at providing a first assessment of environmental alterations of groundwater ecosystems from agricultural watersheds in northern Chile by specifically evaluating the effects of nitrogen and pesticide loads on groundwater communities and identifing the ecosystem service alterations due to agricultural activities. The study has been performed in a glacial aquifer from Coquimbo region; 250 km north of Santiago de Chile, the floodplain of which is dominated by agriculture (fruits tress, vineyards). Due to low regional precipitations (100-240 mm/year) the aquifer is primarily recharged by snowmelt from the Andean chain and surface runoff. The relative groundwater levels, groundwater temperature, chemical analysis of nitrogen and total phosphorus and pesticide concentrations were examined, along with the evaluation of crustacean biodiversity and spatial distribution pattern. Stygofauna taxonomic richness and the presence of stygobites have been related more to groundwater level stability than to chemical water parameters indicating that over-exploitation has a negative impact on habitat suitability for groundwater invertebrates. Groundwater biota assessment is essential in understanding the impact produced by agriculture activities on groundwater as a resource and as ecosystem, a nexus that becomes more and more widely recognized. The rationale and the preliminary results of this study are summarized in the Suppl. material 1.


Sign in / Sign up

Export Citation Format

Share Document