scholarly journals Analyzing Nootropic Effect of <i>Phyllanthus reticulatus</i> Poir. on Cognitive Functions, Brain Antioxidant Enzymes and Acetylcholinesterase Activity against Aluminium-Induced Alzheimer’s Model in Rats: Applicable for Controlling the Risk Factors of Alzheimer’s Disease

2016 ◽  
Vol 05 (03) ◽  
pp. 87-102 ◽  
Author(s):  
Md. Sahab Uddin ◽  
Abdullah Al Mamun ◽  
Mohammed Ashraful Iqbal ◽  
Ariful Islam ◽  
Md. Farhad Hossain ◽  
...  
2020 ◽  
Vol 6 (5) ◽  
pp. 1-7
Author(s):  
Chinonye A Maduagwuna ◽  

Study background: Chronic neuroinflammation is a common emerging hallmark of several neurodegenerative diseases. Alzheimer’s Disease (AD) is the most common cause of dementia among the elderly and is characterized by loss of memory and other cognitive functions.


2020 ◽  
Vol 18 (4) ◽  
pp. 354-359
Author(s):  
Shirin Tarbiat ◽  
Azize Simay Türütoğlu ◽  
Merve Ekingen

Alzheimer's disease is a neurodegenerative disorder characterized by memory loss and impairment of language. Alzheimer's disease is strongly associated with oxidative stress and impairment in the cholinergic pathway, which results in decreased levels of acetylcholine in certain areas of the brain. Hence, inhibition of acetylcholinesterase activity has been recognized as an acceptable treatment against Alzheimer's disease. Nature provides an array of bioactive compounds, which may protect against free radical damage and inhibit acetylcholinesterase activity. This study compares the in vitro antioxidant and anticholinesterase activities of hydroalcoholic extracts of five cultivars of Rosa Damascena Mill. petals (R. damascena 'Bulgarica', R. damascena 'Faik', R. damascena 'Iranica', R. damascena 'Complex-635' and R. damascena 'Complex-637') from Isparta, Turkey. The antioxidant activities of the hydroalcoholic extracts were tested for ferric ion reduction and DPPH radical scavenging activities. The anti-acetylcholinesterase activity was also evaluated. All rose cultivars showed a high potency for scavenging free radical and inhibiting acetylcholinesterase activity. There was a significant correlation between antioxidant and acetylcholinesterase inhibitory activity. Among cultivars, Complex-635 showed the highest inhibitory effect with an IC50 value of 3.92 µg/mL. Our results suggest that all these extracts may have the potential to treat Alzheimer's disease with Complex-635 showing more promise.


2020 ◽  
Vol 26 ◽  
Author(s):  
Nimra Javaid ◽  
Muhammad Ajmal Shah ◽  
Azhar Rasul ◽  
Zunera Chauhdary ◽  
Uzma Saleem ◽  
...  

: Neurodegeneration is a multifactorial process involved the different cytotoxic pathways that lead towards neuronal cell death. Alzheimer’s disease (AD) is a persistent neurodegenerative disorder that normally has a steady onset yet later on it worsens. The documented evidence of AD neuropathology manifested the neuro-inflammation, increased reactive oxygen, nitrogen species and decreased antioxidant protective process; mitochondrial dysfunction as well as increased level of acetylcholinesterase activity. Moreover, enhanced action of proteins leads towards neural apoptosis which have a vital role in the degeneration of neurons. The inability of commercial therapeutic options to treat AD with targeting single mechanism leads the attraction towards organic drugs. Ellagic acid is a dimer of gallic acid, latest studies expressed that ellagic acid can initiate the numerous cell signaling transmission and decrease the progression of disorders, involved in the degeneration of neurons. The influential property of ellagic acid to protect the neurons in neurodegenerative disorders is due to its antioxidant effect, iron chelating and mitochondrial protective effect. The main goal of this review is to critically analyze the molecular mode of action of ellagic acid against neurodegeneration.


2020 ◽  
Vol 17 ◽  
Author(s):  
Hyung-Ji Kim ◽  
Jae-Hong Lee ◽  
E-nae Cheong ◽  
Sung-Eun Chung ◽  
Sungyang Jo ◽  
...  

Background: Amyloid PET allows for the assessment of amyloid β status in the brain, distinguishing true Alzheimer’s disease from Alzheimer’s disease-mimicking conditions. Around 15–20% of patients with clinically probable Alzheimer’s disease have been found to have no significant Alzheimer’s pathology on amyloid PET. However, a limited number of studies had been conducted this subpopulation in terms of clinical progression. Objective: We investigated the risk factors that could affect the progression to dementia in patients with amyloid-negative amnestic mild cognitive impairment (MCI). Methods: This study was a single-institutional, retrospective cohort study of patients over the age of 50 with amyloidnegative amnestic MCI who visited the memory clinic of Asan Medical Center with a follow-up period of more than 36 months. All participants underwent brain magnetic resonance imaging (MRI), detailed neuropsychological testing, and fluorine-18[F18]-florbetaben amyloid PET. Results: During the follow-up period, 39 of 107 patients progressed to dementia from amnestic MCI. In comparison with the stationary group, the progressed group had a more severe impairment in verbal and visual episodic memory function and hippocampal atrophy, which showed an Alzheimer’s disease-like pattern despite the lack of evidence for significant Alzheimer’s disease pathology. Voxel-based morphometric MRI analysis revealed that the progressed group had a reduced gray matter volume in the bilateral cerebellar cortices, right temporal cortex, and bilateral insular cortices. Conclusion: Considering the lack of evidence of amyloid pathology, clinical progression of these subpopulation may be caused by other neuropathologies such as TDP-43, abnormal tau or alpha synuclein that lead to neurodegeneration independent of amyloid-driven pathway. Further prospective studies incorporating biomarkers of Alzheimer’s diseasemimicking dementia are warranted.


2019 ◽  
Vol 15 (4) ◽  
pp. 373-382 ◽  
Author(s):  
Ralph C. Gomes ◽  
Renata P. Sakata ◽  
Wanda P. Almeida ◽  
Fernando Coelho

Background: The most important cause of dementia affecting elderly people is the Alzheimer’s disease (AD). Patients affected by this progressive and neurodegenerative disease have severe memory and cognitive function impairments. Some medicines used for treating this disease in the early stages are based on inhibition of acetylcholinesterase. Population aging should contribute to increase the cases of patients suffering from Alzheimer's disease, thus requiring the development of new therapeutic entities for the treatment of this disease. Methods: The objective of this work is to identify new substances that have spatial structural similarity with donepezil, an efficient commercial drug used for the treatment of Alzheimer's disease, and to evaluate the capacity of inhibition of these new substances against the enzyme acetylcholinesterase. Results: Based on a previous results of our group, we prepared a set of 11 spirocyclohexadienones with different substitutions patterns in three steps and overall yield of up to 59%. These compounds were evaluated in vitro against acetylcholinesterase. We found that eight of them are able to inhibit the acetylcholinesterase activity, with IC50 values ranging from 0.12 to 12.67 µM. Molecular docking study indicated that the spirocyclohexadienone, 9e (IC50 = 0.12 µM), a mixedtype AChE inhibitor, showed a good interaction at active site of the enzyme, including the cationic (CAS) and the peripheral site (PAS). Conclusion: We described the first study aimed at investigating the biological properties of spirocyclohexadienones as acetylcholinesterase inhibitors. Thus, we have identified an inhibitor, which provided valuable insights for further studies aimed at the discovery of more potent acetylcholinesterase inhibitors.


2021 ◽  
Vol 8 (1) ◽  
pp. e000759
Author(s):  
Daniel Higbee ◽  
Raquel Granell ◽  
Esther Walton ◽  
Roxanna Korologou-Linden ◽  
George Davey Smith ◽  
...  

RationaleLarge retrospective case-control studies have reported an association between chronic obstructive pulmonary disease (COPD), reduced lung function and an increased risk of Alzheimer’s disease. However, it remains unclear if these diseases are causally linked, or due to shared risk factors. Conventional observational epidemiology suffers from unmeasured confounding and reverse causation. Additional analyses addressing causality are required.ObjectivesTo examine a causal relationship between COPD, lung function and Alzheimer’s disease.MethodsUsing two-sample Mendelian randomisation, we used single nucleotide polymorphisms (SNPs) identified in a genome wide association study (GWAS) for lung function as instrumental variables (exposure). Additionally, we used SNPs discovered in a GWAS for COPD in those with moderate to very severe obstruction. The effect of these SNPs on Alzheimer’s disease (outcome) was taken from a GWAS based on a sample of 24 807 patients and 55 058 controls.ResultsWe found minimal evidence for an effect of either lung function (OR: 1.02 per SD; 95% CI 0.91 to 1.13; p value 0.68) or liability for COPD on Alzheimer’s disease (OR: 0.97 per SD; 95% CI 0.92 to 1.03; p value 0.40).ConclusionNeither reduced lung function nor liability COPD are likely to be causally associated with an increased risk of Alzheimer’s, any observed association is likely due to unmeasured confounding. Scientific attention and health prevention policy may be better focused on overlapping risk factors, rather than attempts to reduce risk of Alzheimer’s disease by targeting impaired lung function or COPD directly.


Sign in / Sign up

Export Citation Format

Share Document