scholarly journals Physiological Role of Humic Acid and Nicotinamide on Improving Plant Growth, Yield, and Mineral Nutrient of Wheat (<i>Triticum durum</i>) Grown under Newly Reclaimed Sandy Soil

2014 ◽  
Vol 05 (08) ◽  
pp. 687-700 ◽  
Author(s):  
Hala Safwat Mohamed El-Bassiouny ◽  
Bakry Ahmed Bakry ◽  
Amany Abd El-Monem Attia ◽  
Maha Mohamed Abd Allah
Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1887
Author(s):  
Mei Han ◽  
Can Zhang ◽  
Peter Suglo ◽  
Shuyue Sun ◽  
Mingyao Wang ◽  
...  

L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and glycolysis pathway intermediates, and hormones, which are vital for growth and defense. In animals and humans, lines of data have proved that Asp is indispensable for cell proliferation. However, in plants, despite the extensive study of the Asp family amino acid pathway, little attention has been paid to the function of Asp through the other numerous pathways. This review aims to elucidate the most important aspects of Asp in plants, from biosynthesis to catabolism and the role of Asp and its metabolic derivatives in response to changing environmental conditions. It considers the distribution of Asp in various cell compartments and the change of Asp level, and its significance in the whole plant under various stresses. Moreover, it provides evidence of the interconnection between Asp and phytohormones, which have prominent functions in plant growth, development, and defense. The updated information will help improve our understanding of the physiological role of Asp and Asp-borne metabolic fluxes, supporting the modular operation of these networks.


Planta ◽  
2015 ◽  
Vol 241 (6) ◽  
pp. 1313-1324 ◽  
Author(s):  
Adeyemi O. Aremu ◽  
Nqobile A. Masondo ◽  
Kannan R. R. Rengasamy ◽  
Stephen O. Amoo ◽  
Jiří Gruz ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 6168
Author(s):  
Xiaojing Liu ◽  
Xin Wang ◽  
Xin Yan ◽  
Shaobo Li ◽  
Hui Peng

Glycine- and proline-rich proteins (GPRPs) comprise a small conserved family that is widely distributed in the plant kingdom. GPRPs are relatively short peptides (<200 amino acids) that contain three typical domains, including an N-terminal XYPP-repeat domain, a middle hydrophobic domain rich in alanine, and a C-terminal HGK-repeat domain. These proteins have been proposed to play fundamental roles in plant growth and environmental adaptation, but their functions remain unknown. In this study, we selected an Arabidopsis GPRP (AtGPRP3) to profile the physiological role of GPRPs. Transcripts of AtGPRP3 could be detected in the whole Arabidopsis plant, but greater amounts were found in the rosette, followed by the cauline. The AtGPRP3::GFP fusion protein was mainly localized in the nucleus. The overexpression and knockout of AtGPRP3, respectively, retarded and accelerated the growth of Arabidopsis seedlings, while the increase in the growth rate of atgprp3 plants was offset by the complementary expression of AtGPRP3. CAT2 and CAT3, but not CAT1, interacted with AtGPRP3 in the nuclei of Arabidopsis protoplasts. The knockout of CAT2 by CRISPR-Cas9 retarded the growth of the Arabidopsis seedlings. Together, our data suggest that AtGPRP3 negatively regulates plant growth, potentially through CAT2 and CAT3.


HortScience ◽  
2013 ◽  
Vol 48 (12) ◽  
pp. 1470-1477 ◽  
Author(s):  
Martin Makgose Maboko ◽  
Isa Bertling ◽  
Christian Phillipus Du Plooy

Mycorrhizal inoculation improves nutrient uptake in a range of host plants. Insufficient nutrient uptake by plants grown hydroponically is of major environmental and economic concern. Tomato seedlings, therefore, were treated with a mycorrhizal inoculant (Mycoroot™) at transplanting to potentially enhance nutrient uptake by the plant. Then seedlings were transferred to either a temperature-controlled (TC) or a non-temperature-controlled (NTC) tunnel and maintained using the recommended (100%) or a reduced (75% and 50%) nutrient concentration. Plants grown in the NTC tunnel had significantly poorer plant growth, lower fruit mineral concentration, and lower yield compared with fruit from plants in the TC tunnel. Leaves from plants in the NTC tunnel had higher microelement concentrations than those in the TC tunnel. Highest yields were obtained from plants fertigated with 75% of the recommended nutrient concentration, and not from the 100% nutrient concentration. Application of arbuscular mycorrhizal fungi (AMF) neither enhanced plant growth, nor yield, nor fruit mineral nutrient concentrations. However, temperature control positively affected the fruit Mn and Zn concentration in the TC tunnel following AMF application.


2020 ◽  
Vol 8 (3) ◽  
pp. 355 ◽  
Author(s):  
Meysam Taghinasab ◽  
Suha Jabaji

Plants, including cannabis (Cannabis sativa subsp. sativa), host distinct beneficial microbial communities on and inside their tissues and organs, including seeds. They contribute to plant growth, facilitating mineral nutrient uptake, inducing defence resistance against pathogens, and modulating the production of plant secondary metabolites. Understanding the microbial partnerships with cannabis has the potential to affect the agricultural practices by improving plant fitness and the yield of cannabinoids. Little is known about this beneficial cannabis-microbe partnership, and the complex relationship between the endogenous microbes associated with various tissues of the plant, and the role that cannabis may play in supporting or enhancing them. This review will consider cannabis microbiota studies and the effects of endophytes on the elicitation of secondary metabolite production in cannabis plants. The review aims to shed light on the importance of the cannabis microbiome and how cannabinoid compound concentrations can be stimulated through symbiotic and/or mutualistic relationships with endophytes.


2020 ◽  
Vol 18 (1) ◽  
pp. 39-49
Author(s):  
P Bhasker ◽  
PK Gupta ◽  
HP Sharma

Salicylic acid (SA) is endogenous naturally occurring plant growth hormone acting as an important signaling molecule adds tolerance against abiotic stress. A field experiment was conducted to assess the efficacy of exogenous application of SA on growth, yield and storage performances of onion during Rabi 2012-13, 2013-14 and 2014-15. The experiment was comprised of 6 different treatments of SA including control. Exogenous applications of all SA treatments significantly influenced plant growth and development. The treatment application of SA at 30 days after seed sowing and second spray at 30 days after transplanting and third spray at 60 days after transplanting performed superior in terms of growth, development and yield. Exogenous application of SA significantly influenced on thrips population and stemphylium blight disease incidence and intensity. The results also revealed that SA partially involved in post-harvest management of onion. SAARC J. Agri., 18(1):39-49 (2020)


2020 ◽  
Vol 13 (2) ◽  
pp. 68-75 ◽  
Author(s):  
Mervat Shamon Sad ◽  
Mohamed El-Sayed E ◽  
Mona Gergis Dawood ◽  
Kowthar Gad Ali El

Sign in / Sign up

Export Citation Format

Share Document