scholarly journals Study the Attenuation Coefficient of Granite to Use It as Shields against Gamma Ray

Detection ◽  
2016 ◽  
Vol 04 (02) ◽  
pp. 33-39 ◽  
Author(s):  
Laith Ahmed Najam ◽  
Abdalsattar Kareem Hashim ◽  
Hussein Abdulkareem Ahmed ◽  
Israa M. Hassan
2020 ◽  
Vol 11 (1) ◽  
pp. 326
Author(s):  
M.I. Sayyed ◽  
K.A. Mahmoud ◽  
O.L. Tashlykov ◽  
Mayeen Uddin Khandaker ◽  
M.R.I. Faruque

Elastic moduli were theoretically computed using the Makishima–Mackenzie model for SiO2–Na2O–CaO glasses doped with Sb2O3 contents. The calculated elastic moduli (Young’s, bulk, shear, and longitudinal modulus) were observed to increase with an increase in the Sb2O3 contents. The microhardness showed an increase, while Poisson’s ratio decreased with the rise of the Sb2O3 contents. In addition, gamma-ray and neutron shielding parameters were evaluated for the investigated glasses. The linear attenuation coefficient (LAC) was simulated using the Monte Carlo N-particle transport code (MCNP-5). Other parameters, such as the mass attenuation coefficient (MAC), transmission factor (TF), and half-value layer, were calculated based on the simulated LAC. The addition of Sb2O3 content was observed to enhance the investigated glasses’ shielding parameters, where the highest LAC was achieved for the SCNSb10 glass with 10 mol% Sb2O3 and decreased from 0.441 to 0.154 cm−1 at gamma energies between 0.248 and 1.406 MeV. Furthermore, the fast neutron effective removal cross-section (∑R) was computed theoretically. The calculated results showed that the highest ∑R was equal to 0.0341 cm2g−1 and was obtained for the SCNSb0 glass, which had no Sb2O3 content, while the lowest ∑R was equal to 0.0286 cm2 g−1 for the SCNSb10 glass sample. The present work was carried out to examine the advantages of the soda–lime glasses with different Sb2O3 contents in several photon shielding applications, especially for radiation safety in nuclear installations.


2016 ◽  
Vol 675-676 ◽  
pp. 730-733
Author(s):  
Chumphon Khobkham ◽  
W. Chaiphaksa ◽  
P. Limkitjaroenporn ◽  
P. Prongsamrong ◽  
P. Wiwatkanjana ◽  
...  

In this work, the total mass attenuation coefficient and partial interactions of the zirconium alloy have been calculated by WinXCom program at 1 keV-100 MeV gamma ray energies. Zr2(Fe,Ni) alloys was studied for the mass attenuation coefficients, photoelectric absorption, incoherent, coherent and pair production processes. The effective atomic numbers and electron densities were also calculated. The calculated results show that the total mass attenuation coefficient decreased with increasing of gamma rays energy. The value of total mass attenuation coefficient of each material was different, which depend on chemical compositions of alloy. The partials interactions, effective atomic numbers and electron densities were also calculated and discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
J. A. R. Borges ◽  
L. F. Pires ◽  
J. C. Costa

With increasing demand for better yield in agricultural areas, soil physical property representative measurements are more and more essential. Nuclear techniques such as computerized tomography (CT) and gamma-ray attenuation (GAT) have been widely employed with this purpose. The soil mass attenuation coefficient (μs) is an important parameter for CT and GAT analysis. When experimentally determined (μes), the use of suitable sized samples enable to evaluate it precisely, as well as to reduce measurement time and costs. This study investigated the representative elementary length (REL) of sandy and clayey soils forμesmeasurements. Two radioactive sources were employed (241Am and137Cs), three collimators (2–4 mm diameters), and 14 thickness (x) samples (2–15 cm). Results indicated ideal thickness intervals of 12–15 and 2–4 cm for the sources137Cs and241Am, respectively. The application of such results in representative elementary area (REA) evaluations in clayey soil clods via CT indicated thatμesaverage values obtained forx > 4 cm and source241Am might induce to the use of samples which are not large enough for soil bulk density evaluations (ρs). As a consequence,ρsmight be under- or overestimated, generating inaccurate conclusions about the physical quality of the soil under study.


2011 ◽  
Vol 8 (2) ◽  
pp. 613-617 ◽  
Author(s):  
Baghdad Science Journal

In this study, dependence of gamma-ray absorption coefficient on the size of Pb particle size ranging from 200µm up to 2.5mm, using different weights of each particle size. The results show that gamma-ray attenuation coefficient is inversely proportional with the size of Pb particle size due to the reduction of the spaces between the lead particles.


Author(s):  
Majid Jalali

The compounds, Na2B4O7, H3BO3, CdCl2 and NaCl and their solutions, attenuate gamma rays in addition to neutron absorption. These compounds are widely used in shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to saturated solutions of the above four compounds, in energies 1172 keV and 1332 keV have been measured by NaI detector and agree very well with the results obtained by Xcom code. Experiment and computation show that, H3BO3 has the highest gamma ray attenuation coefficient among the aforementioned compounds.


2021 ◽  
Vol 19 (6) ◽  
pp. 107-114
Author(s):  
Mohammed Yahya Hadi ◽  
Ali Hussein F. Alnasraui ◽  
Ali Adil Turki Aldalawi

The purpose of this paper is to determine the mass attenuation coefficient (μ/ρ), of a sample. In this work used (C16H32O2) fatty acid, exposed to gamma rays (γ), emitted from various sources 57Co, 133Ba, 22Na, 137Cs, 54Mn, and sCo with energies from 0.122 to 1.330 MeV. It exposes the compound to gamma rays and discloses the radiation force that passes through the sample, the rest of the gamma radiation attenuated. A NaI fluorescence detector (Tl) with an accuracy of 8.2% (at 662 kV) was used for the gamma ray detector beam. An advantage of using (μ/ρ) coefficient data can be obtained effective atomic numbers, atomic cross-section and effective electron densities.


2014 ◽  
Vol 679 ◽  
pp. 39-44 ◽  
Author(s):  
Ali Basheer Azeez ◽  
Kahtan S. Mohammed ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Andrei Victor Sandhu ◽  
Azmi Rahmat ◽  
...  

Lead metal proved to be toxic. Its lethal effect became eminent. Many developed countries have banned lead usage in various applications. Seeking alternative material to replace lead is a crucial goal. As density concerns, tungsten-brass composite is a good candidate for lead replacement. In this study the radiation shielding effects of tungsten-brass composites were evaluated. To attain this goal, four tungsten-brass sets were prepared. The tungsten (W) wt. % in these specimens was ranged from 50 to 80, the balance is brass. The specimens were sintered at 10500C in alumina tube furnace under protective environment. To evaluate the radiation shielding performance of these specimens, two gamma ray sources, 137Cs and 60Co were utilized. The photon energy levels for these sources were of o.662MeV and 1.25MeV respectively. The measurements were performed using gamma spectrometer contains NaI (Tl) detector. The anti-radiation performance of the tungsten-brass was correlated to that of lead under similar conditions. Vickers micro hardness, relative sintered density, micro structural characterisation and linear attenuation coefficient (μ) were carried out. Samples with the highest Weight percentage of W has the highest hardness value while the one with the lowest Weight percentage of W. The linear attenuation coefficients of the specimens were significantly improved by increasing the W wt. % of the specimen. The linear attenuation coefficients of the tested specimens ranged from 0.85±0.010cm-1 to 1.12±0.049cm-1for 60Co and0.73±0.012 cm-1 to 0.97±0.027 cm-1 for 137Cs. This result indicates that W-brass composites are suitable material for lead replacement as a shielding barrier.Keywords: Attenuation coefficient, radiation shielding, lead, tungsten-brass composites, NaI (Tl).


Author(s):  
A. O. Ogunrotimi ◽  
M. Y. Onimisi ◽  
I. O. Okunade

This study considered the setup of gamma transmission facility to develop a methodology for determining the amount of cement in sandcrete block. Twelve block samples was moulded in varying sand/cement ratio. The 12 samples each were measured both in volume, masses and density. Each of the samples went through a destructive test to determine the compressive strength via strength test machine. Also each of the sample went through a non destructive gamma ray transmission (GRT) test, where gamma count was taken both before and after crushing. The linear & mass attenuation co-efficient U & U (cm2/g) was determined by (1) The incident gamma ray intensity,(2) the attenuation gamma ray intensity and (3) the background intensity. We realized that the cement weight concentration against the mass attenuation co-efficient has a linear corelation of 0.97, while the compressive strength of the same samples against cement concentration also give a linear correlation of 0.96 except for lower cement values of 7.35 and 9.37wt% which deviates from the straight line. Its deduced that there is a remarkable relationship between mass attenuation coefficient, compressive strength and cement concentration, thus mass attenuation coefficient against compressive strength has a linear correlation of 0.985. Conclusively, it was noted that gamma transmission technique is non-destructive, fast and cost effective compared to the conventional method.


2020 ◽  
Vol 1 (9) ◽  
pp. 421-426
Author(s):  
Adnan Küçükönder ◽  
Saniye Tekerek

In this study, total atomic cross-section (σta), total moleculer cross-section (σtm) total electronic cross-section (σte), effective atomic number (Zeff), effective electron density (Neff) and Kerma (K) were determined both experimentally and theoretically values for some iodine compounds. Experimental mass attenuation coefficient (µ/ρ) values for some iodine compounds were calculated with the data obtained from the test results. The theoretical mass attenuation coefficient values of these compounds were calculated with the WinXCOM data program. Also, we have performed the measurements for the calculations of experimental values mass attenuation coefficient using direct transmission experimental geometry. The transmission photon intensity of halogene iodine compounds were measured in a narrow beam experiment geometry was used 59.543 keV γ-ray from an 241Am radioactive source. The tranmissions spectra from iodine compounds were recorded with a Si (Li) detector having a resolution of 155 eV FWHM at 5.9 keV (55Fe) and coupled to a 1024 channel analyzer through a spectroscopic amplifier. This study was provided that new insights into the literature since mass attenuation coefficient experimental values of some I compounds have not been determined previously. More research should be done to observe the changes in the chemical structure of iodine compounds with gamma-ray interaction. This study will shed light on further research.


Sign in / Sign up

Export Citation Format

Share Document