scholarly journals How a Minimum Time Step and Formation of Initial Causal Structure in Space-Time Is Linked to an Enormous Initial Cosmological Constant

2018 ◽  
Vol 04 (03) ◽  
pp. 541-548
Author(s):  
Andrew Walcott Beckwith
2014 ◽  
Vol 92 (6) ◽  
pp. 484-487 ◽  
Author(s):  
Fatemeh Ahmadi ◽  
Jafar Khodagholizadeh

Various approaches to quantum gravity, such as string theory, predict a minimal measurable length and a modification of the Heisenberg uncertainty principle near the Plank scale, known as the generalized uncertainty principle (GUP). Here we study the effects of GUP, which preserves the rotational symmetry of the space–time, on the Kepler problem. By comparing the value of the perihelion shift of the planet Mercury in Schwarzschild – de Sitter space–time with the resultant value of GUP, we find a relation between the minimal measurable length and the cosmological constant of the space–time. Now, if the cosmological constant varies with time, we have a variable minimal length in the space–time. Finally, we investigate the effects of GUP on the stability of circular orbits.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 534
Author(s):  
Adrian Kent

Summoning is a task between two parties, Alice and Bob, with distributed networks of agents in space-time. Bob gives Alice a random quantum state, known to him but not her, at some point. She is required to return the state at some later point, belonging to a subset defined by communications received from Bob at other points. Many results about summoning, including the impossibility of unrestricted summoning tasks and the necessary conditions for specific types of summoning tasks to be possible, follow directly from the quantum no-cloning theorem and the relativistic no-superluminal-signalling principle. The impossibility of cloning devices can be derived from the impossibility of superluminal signalling and the projection postulate, together with assumptions about the devices’ location-independent functioning. In this qualified sense, known summoning results follow from the causal structure of space-time and the properties of quantum measurements. Bounds on the fidelity of approximate cloning can be similarly derived. Bit commitment protocols and other cryptographic protocols based on the no-summoning theorem can thus be proven secure against some classes of post-quantum but non-signalling adversaries.


1997 ◽  
Vol 12 (32) ◽  
pp. 2421-2424 ◽  
Author(s):  
E. I. Guendelman ◽  
A. B. Kaganovich

We develop a gravitational theory where the measure of integration in the action principle is not necessarily [Formula: see text] but it is determined dynamically through additional degrees of freedom. This theory is based on the demand that such measure respects the principle of "non-gravitating vacuum energy" which states that the Lagrangian density L can be changed to L + const. without affecting the dynamics. Formulating the theory in the first-order formalism we get as a consequence of the variational principle a constraint that enforces the vanishing of the cosmological constant. The most realistic model that implements these ideas is realized in a six or higher dimensional space–time. The compactification of extra dimensions into a sphere gives the possibility of generating scalar masses and potentials, gauge fields and fermionic masses. It turns out that the remaining four-dimensional space–time must have effective zero cosmological constant.


2016 ◽  
Vol 94 (1) ◽  
pp. 58-70 ◽  
Author(s):  
A. Sheykhi ◽  
S.H. Hendi

In this paper, we propose a n-dimensional action in which gravity is coupled to exponential nonlinear electrodynamics and scalar dilaton field with Liouville-type potential. By varying the action, we obtain the field equations. Then, we construct a new class of charged, rotating black brane solutions, with k = [(n – 1)/2] rotation parameters, of this theory. Because of the presence of the Liouville-type dilaton potential, the asymptotic behavior of the obtained solutions is neither flat nor (anti)-de Sitter. We investigate the causal structure of the space–time in ample details. We find the suitable counter term that removes the divergences of the action in the presence of the dilaton field, and calculate the conserved and thermodynamic quantities of the space–time. Interestingly enough, we find that the conserved quantities crucially depend on the dilaton coupling constant, α, while they are independent of the nonlinear parameter, β. We also check the validity of the first law of thermodynamics on the black brane horizon. Finally, we study thermal stability of the solutions by computing the heat capacity in the canonical ensemble. We disclose the effects of rotation parameter, nonlinearity of electrodynamics, and dilaton field on the thermal stability conditions.


2016 ◽  
Vol 41 ◽  
pp. 1660127
Author(s):  
Irina Dymnikova ◽  
Anna Dobosz ◽  
Bożena Sołtysek

We present a regular spherically symmetric cosmological model of the Lemaitre class distinguished by the holographic principle as the thermodynamically stable end-point of quantum evaporation of the cosmological horizon. A source term in the Einstein equations connects smoothly two de Sitter vacua with different values of cosmological constant and corresponds to anisotropic vacuum dark fluid defined by symmetry of its stress-energy tensor which is invariant under the radial boosts. Global structure of space-time is the same as for the de Sitter space-time. Cosmological evolution goes from a big initial value of the cosmological constant towards its presently observed value.


1993 ◽  
Vol 47 (8) ◽  
pp. 3203-3213 ◽  
Author(s):  
Ken-ichi Nakao ◽  
Kazuhiro Yamamoto ◽  
Kei-ichi Maeda

2007 ◽  
Vol 22 (10) ◽  
pp. 1797-1818 ◽  
Author(s):  
VISHNU JEJJALA ◽  
DJORDJE MINIC

The cosmological constant problem is turned around to argue for a new foundational physics postulate underlying a consistent quantum theory of gravity and matter, such as string theory. This postulate is a quantum equivalence principle which demands a consistent gauging of the geometric structure of canonical quantum theory. We argue that string theory can be formulated to accommodate such a principle, and that in such a theory the observed cosmological constant is a fluctuation about a zero value. This fluctuation arises from an uncertainty relation involving the cosmological constant and the effective volume of space–time. The measured, small vacuum energy is dynamically tied to the large "size" of the universe, thus violating naive decoupling between small and large scales. The numerical value is related to the scale of cosmological supersymmetry breaking, supersymmetry being needed for a nonperturbative stability of local Minkowski space–time regions in the classical regime.


Sign in / Sign up

Export Citation Format

Share Document