scholarly journals New Gene Therapy Strategies for the Deletion of Exon 44 of Dystrophin Gene Based on Gene Editing by TALENs

2013 ◽  
Vol 03 (01) ◽  
pp. 1-6
Author(s):  
Ping Li ◽  
Yunzhi Pan ◽  
Alice S. S. Li ◽  
Aijuan Sun ◽  
Jia Zhang ◽  
...  
2021 ◽  
Author(s):  
Moataz Dowaidar

The CCR5 null genotype generation has been a main focus in the HIV gene therapy industry. The presence of the X4 tropic virus, mobilization of HSPCs, the quality of the cells for manipulation, and gene editing efficiency appear to be the main obstacles in translating this technique. Unintended off-target cleavage is a key problem in CRISPR/Cas9 editing. With the development of small molecule expansion methods for cord blood HSPC, it would be advantageous to modify CCR5 in cord blood cells and expand them for transplantation. The generation of engraftable HSPCS from iPSCs would be an ideal technique for HSCC gene therapy.The haplotype-characterized iPSC would be the donor for many patients, and it could be a commercially available product. The 32 C CR5 homozygous people had no elevated mortality risks according to whole-exome sequencing and whole-genome genotyping, according to CCR 5 positive people, and had no higher mortality risks compared to those who were HIV positive. Recent advances in gene editing, such as non-viral delivery of Cas9 ribonucleoproteins, incorporation of a 3X-nuclear localization signal into spCas9, and use of HiFi Cas9 with chemically modified sgRNAs, can be combined with recent advances in transplantation. Infusing modest doses of gene modified primitive HSPC fractions indicated by CD34 + CD90 + CD45RA-, which can engraft better, is another option for lowering the cost of gene therapy.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Rui An ◽  
Cong Xi ◽  
Jian Xu ◽  
Ying Liu ◽  
Shumiao Zhang ◽  
...  

Cotransfer of angiogenic and antiapoptotic genes could be the basis of new gene therapy strategies for myocardial infarction. In this study, rAAV-PR39-ADM, coexpressing antimicrobial peptide (PR39) and adrenomedullin (ADM), was designed with the mediation of recombinant adeno-associated virus. In vitro, CRL-1730 cells were divided into four groups, namely, the sham group, the AAV-null group, the NS (normal saline) group, and the PR39-ADM group. Immunocytochemistry analysis, CCK-8 assays, Matrigel assays, and apoptotic analysis were performed; in vivo, myocardial infarction model was established through ligation of the left coronary artery on rats, and treatment groups corresponded to those used in vitro. Myocardial injury, cardiac performance, and the extent of myocardial apoptosis were assessed. Results suggested that rAAV-PR39-ADM administration after myocardial infarction improved cell viability and cardiac function, attenuated apoptosis and myocardial injury, and promoted angiogenesis. Subsequently, levels of 6×His, HIF-1α, VEGF, p-Akt, Akt, ADM, Bcl-2, and Bax were measured by western blot. rAAV-PR39-ADM increased p-Akt, HIF-1α, and VEGF levels and induced higher Bcl-2 expression and lower Bax expression. In conclusion, our results demonstrate that rAAV-PR39-ADM mitigates myocardial injury by promoting angiogenesis and reducing apoptosis. This study suggests a potential novel gene therapy-based method that could be used clinically for myocardial infarction.


2012 ◽  
Vol 7 (3) ◽  
pp. 297-312 ◽  
Author(s):  
Raul Ortiz ◽  
Consolacion Melguizo ◽  
Jose Prados ◽  
Pablo J. Alvarez ◽  
Octavio Caba ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 100
Author(s):  
Tianxia Lan ◽  
Li Chen ◽  
Xiawei Wei

The relationship between chronic inflammation and neoplastic diseases is not fully understood. The inflammatory microenvironment of a tumor is an intricate network that consists of numerous types of cells, cytokines, enzymes and signaling pathways. Recent evidence shows that the crucial components of cancer-related inflammation are involved in a coordinated system to influence the development of cancer, which may shed light on the development of potential anticancer therapies. Since the last century, considerable effort has been devoted to developing gene therapies for life-threatening diseases. When it comes to modulating the inflammatory microenvironment for cancer therapy, inflammatory cytokines are the most efficient targets. In this manuscript, we provide a comprehensive review of the relationship between inflammation and cancer development, especially focusing on inflammatory cytokines. We also summarize the clinical trials for gene therapy targeting inflammatory cytokines for cancer treatment. Future perspectives concerned with new gene-editing technology and novel gene delivery systems are finally provided.


2005 ◽  
Vol 5 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Iris Eder ◽  
Petra Haag ◽  
Georg Bartsch ◽  
Helmut Klocker

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 779
Author(s):  
Man Teng ◽  
Yongxiu Yao ◽  
Venugopal Nair ◽  
Jun Luo

In recent years, the CRISPR/Cas9-based gene-editing techniques have been well developed and applied widely in several aspects of research in the biological sciences, in many species, including humans, animals, plants, and even in viruses. Modification of the viral genome is crucial for revealing gene function, virus pathogenesis, gene therapy, genetic engineering, and vaccine development. Herein, we have provided a brief review of the different technologies for the modification of the viral genomes. Particularly, we have focused on the recently developed CRISPR/Cas9-based gene-editing system, detailing its origin, functional principles, and touching on its latest achievements in virology research and applications in vaccine development, especially in large DNA viruses of humans and animals. Future prospects of CRISPR/Cas9-based gene-editing technology in virology research, including the potential shortcomings, are also discussed.


Author(s):  
Aida Nourbakhsh ◽  
Brett M. Colbert ◽  
Eric Nisenbaum ◽  
Aziz El-Amraoui ◽  
Derek M. Dykxhoorn ◽  
...  

AbstractProgressive non-syndromic sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment, affecting more than a third of individuals over the age of 65. PNSHL includes noise-induced hearing loss (NIHL) and inherited forms of deafness, among which is delayed-onset autosomal dominant hearing loss (AD PNSHL). PNSHL is a prime candidate for genetic therapies due to the fact that PNSHL has been studied extensively, and there is a potentially wide window between identification of the disorder and the onset of hearing loss. Several gene therapy strategies exist that show potential for targeting PNSHL, including viral and non-viral approaches, and gene editing versus gene-modulating approaches. To fully explore the potential of these therapy strategies, a faithful in vitro model of the human inner ear is needed. Such models may come from induced pluripotent stem cells (iPSCs). The development of new treatment modalities by combining iPSC modeling with novel and innovative gene therapy approaches will pave the way for future applications leading to improved quality of life for many affected individuals and their families.


Sign in / Sign up

Export Citation Format

Share Document