A Real-Time-Capable Simulation Model for Off-Highway Applications Considering Soft Soil

2021 ◽  
Vol 14 (3) ◽  
Author(s):  
Frank Schulte ◽  
Thomas Zubert ◽  
Dennis Roeser ◽  
Norbert Meyer ◽  
Torsten Kluge
Keyword(s):  
Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 644
Author(s):  
Michal Frivaldsky ◽  
Jan Morgos ◽  
Michal Prazenica ◽  
Kristian Takacs

In this paper, we describe a procedure for designing an accurate simulation model using a price-wised linear approach referred to as the power semiconductor converters of a DC microgrid concept. Initially, the selection of topologies of individual power stage blocs are identified. Due to the requirements for verifying the accuracy of the simulation model, physical samples of power converters are realized with a power ratio of 1:10. The focus was on optimization of operational parameters such as real-time behavior (variable waveforms within a time domain), efficiency, and the voltage/current ripples. The approach was compared to real-time operation and efficiency performance was evaluated showing the accuracy and suitability of the presented approach. The results show the potential for developing complex smart grid simulation models, with a high level of accuracy, and thus the possibility to investigate various operational scenarios and the impact of power converter characteristics on the performance of a smart gird. Two possible operational scenarios of the proposed smart grid concept are evaluated and demonstrate that an accurate hardware-in-the-loop (HIL) system can be designed.


Author(s):  
Hamid Khakpour Nejadkhaki ◽  
John F. Hall ◽  
Minghui Zheng ◽  
Teng Wu

A platform for the engineering design, performance, and control of an adaptive wind turbine blade is presented. This environment includes a simulation model, integrative design tool, and control framework. The authors are currently developing a novel blade with an adaptive twist angle distribution (TAD). The TAD influences the aerodynamic loads and thus, system dynamics. The modeling platform facilitates the use of an integrative design tool that establishes the TAD in relation to wind speed. The outcome of this design enables the transformation of the TAD during operation. Still, a robust control method is required to realize the benefits of the adaptive TAD. Moreover, simulation of the TAD is computationally expensive. It also requires a unique approach for both partial and full-load operation. A framework is currently being developed to relate the TAD to the wind turbine and its components. Understanding the relationship between the TAD and the dynamic system is crucial in the establishment of real-time control. This capability is necessary to improve wind capture and reduce system loads. In the current state of development, the platform is capable of maximizing wind capture during partial-load operation. However, the control tasks related to Region 3 and load mitigation are more complex. Our framework will require high-fidelity modeling and reduced-order models that support real-time control. The paper outlines the components of this framework that is being developed. The proposed platform will facilitate expansion and the use of these required modeling techniques. A case study of a 20 kW system is presented based upon the partial-load operation. The study demonstrates how the platform is used to design and control the blade. A low-dimensional aerodynamic model characterizes the blade performance. This interacts with the simulation model to predict the power production. The design tool establishes actuator locations and stiffness properties required for the blade shape to achieve a range of TAD configurations. A supervisory control model is implemented and used to demonstrate how the simulation model blade performs in the case study.


Author(s):  
Iva´n F. Galindo-Garci´a ◽  
Antonio Tavira-Mondrago´n ◽  
Sau´l Rodri´guez-Lozano

A simulation model of the hydraulic system of a hydroelectric power plant is developed and implemented in a real time simulator. The main purpose of the simulator is to test the performance of actual governor control systems using hardware-in-the-loop techniques, in which the actual governor control system is connected to a real time simulator instead of being connected to real equipment. This paper focuses on the modeling of the hydraulic system to be implemented in the simulator. The model consists of an unrestricted reservoir, conduits to transport water, and a turbine to convert the potential energy of the fluid into mechanical power. A nonlinear mathematical model for a non-elastic water column is implemented. Effects due to a surge tank and to various turbines connected to a common tunnel are included in the model by considering head and flow variations at the junction of the common tunnel and the individual penstocks. The model is evaluated by comparing results from simulations with field tests from a four-unit hydroelectric power plant (55 MW per unit). Comparisons show that the model reproduces the general behavior of the field tests. However some deviations are observed during the transient response, in particular the simulation results appear to respond faster than field data.


Sign in / Sign up

Export Citation Format

Share Document