Computational Fluid Dynamics for Design of Motorcycles (Numerical Analysis of Coolant Flow and Aerodynamics)

Author(s):  
Keiji Sakagawa ◽  
Hideto Yoshitake ◽  
Eiji Ihara
2015 ◽  
Author(s):  
Brent S. Paul

The successful integration of aviation capabilities aboard ships is a complex endeavor that must balance ship design with the flight envelope of the helicopter. This can be particularly important when considering air wakes and other flow around the superstructure as it impacts the flight deck. This flow can generate unsteady structures that may interfere with safe helicopter operations. Computational fluid dynamics (CFD) is commonly used to characterize the flow field and assess potential impacts to the flight envelope, which can be used to help define an operating envelope for helicopter operations.


2014 ◽  
Vol 687-691 ◽  
pp. 679-683 ◽  
Author(s):  
Jun Zhang ◽  
Yong Wu ◽  
Hong Mei Tang ◽  
Chun Ren Tang ◽  
Xian Hua Li

The oil spill will directly affect the measuring accuracy of the gear flowmeter, so use the computational fluid dynamics software to calculate the leakage regulation of the internal gear flowmeter is one of the important things. Based on Pumplinx, when the end clearances of the gear flowmeter were 0um, 10um, 20um, 30um, 40um and 50um, the corresponding numerical analysis of spillage was carried out. From the results of numerical analysis, with the increase of the end clearance, the leakage amplification will also increase. In practical work, we should control the end clearance of gear flowmeter strictly while the gear works normally.


2003 ◽  
Author(s):  
Bassam Abu-Hijleh ◽  
Jiyuan Tu ◽  
Aleksander Subic ◽  
Huafeng Li ◽  
Katherine Ilie

The performance of a Rotor-Casing Assembly is influenced more by the internal air leakages than by any other thermo-fluid aspect of its behaviour. The pressure difference driving the air along a leakage path varies periodically and does so in a manner that may not be the same for every leakage path. So the distribution of leakage through the various leakage paths within the machine is important for the improvement of its performance. The total volume of air leakage and the distribution of the leakage among the different paths depend on the rotor-rotor and rotor-casing clearances as well as the geometry of the rotors’ lobes. Computational Fluid Dynamics (CFD) analysis was carried out using the FLUENT. Geometry definition, mesh generation, boundary and flow conditions, and solver parameters have all been investigated as the part of the numerical analysis. This analysis was conducted for static rotors at different positions. The results indicate that the size of the clearances as well as the geometry of the rotors’ lobes can have a significant effect on the total volume of the air leakage as well as the distribution of the leakage among the three main leakage paths. The results can be used to ascertain the proper levels of clearances to be used and the best rotor lobes geometry to be used for the practical reduction of air leakage.


2018 ◽  
Vol 71 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Hiuller Castro Araújo ◽  
Eliana Ferreira Rodrigues ◽  
Elisangela Martins Leal

2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Georgios N. Lygidakis ◽  
Ioannis K. Nikolos

A recently developed academic computational fluid dynamics (CFD) code, named Galatea, is used for the computational study of fully turbulent flow over the NASA common research model (CRM) in a wing-body configuration with and without horizontal tail. A brief description of code's methodology is included, while attention is mainly directed toward the accurate and efficient prediction of pressure distribution on wings' surfaces as well as of computation of lift and drag forces against different angles of attack, using an h-refinement approach and a parallel agglomeration multigrid scheme. The obtained numerical results compare close with both the experimental wind tunnel data and those of reference solvers.


Aviation ◽  
2020 ◽  
Vol 23 (4) ◽  
pp. 114-122
Author(s):  
Zbigniew Czyż ◽  
Paweł Karpiński

The paper presents some of the works related to the project of modern gyrocopter construction with the possibility of a short start, known as "jump-start". It also presents a methodology related to numerical calculations using Computational Fluid Dynamics based on ANSYS Fluent three-dimensional solver. The purpose of the work was to calculate the forces and aerodynamic moments acting on the gyrocopter stabilizers. The calculations were carried out for a range of angle of attack α from –20° to +25° and for a sideslip angle β from 0° to 20°. Based on the calculations carried out, analysis of the impact of the slip angle on the load on the stabilizers has been made.


1998 ◽  
pp. 121-130
Author(s):  
P. Verboven ◽  
M.L. Hoang ◽  
J. De Baerdemaeker ◽  
B.M. Nicolaï

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3515
Author(s):  
J. Gaitan-Aroca ◽  
Fabio Sierra ◽  
Jose Ulises Castellanos Contreras

In this paper, the performance of a biomimetic wind rotor design inspired by Petrea Volubilis seed is presented. Experimentation for this rotor is configured as a horizontal axis wind turbine (HAWT) and numerical analysis is done in order to obtain performance curves with the open-source computational fluid dynamics (CFD) software OpenFoam®. Numerical analysis and experimental results are compared for power Coefficient (Cp) and thrust coefficient (CT). The biomimetic rotor analysis is also compared with experimental results exposed by Castañeda et al. (2011), who were the first to develop those experimentations with this new rotor design. Computational fluid dynamics simulations were performed using an incompressible large Edyy simulation (LES) turbulence models with a localized sub-grid scale (SGS) dynamic one-equation eddy-viscosity. A dynamic mesh based on an arbitrary mesh interface (AMI) was used to simulate rotation and to evaluate flow around rotor blades in order to accurately capture the flow field behavior and to obtain global variables that allow to determine the power potential of this wind rotor turbine. This study will show the potential of this new rotor design for wind power generation.


Author(s):  
Debanshu Roy ◽  
Rathindranath Maiti ◽  
Prasanta K Das ◽  
Piotr Antoniak ◽  
Jaroslaw Stryczek

Chambers in the Gerotor pump units are separated by metal-to-metal geometrically form-closed higher pair active contacts in the lobes of star and ring components. With rotation when the chamber volumes expand and contract, the active contacts move on lobe profiles and are subjected to deformations due to contact stress caused by fluid pressure and transmitted torque. Evidently at two transition active contacts, which separate the high-pressure chambers from the low-pressure chambers, gaps are generated due to contact deformations. However, it is for a short period of time during operation and mostly not at the same time in the two transition contacts. From our experimental visual investigation by photoimaging technique on flow processes, we have visualized that at some angular positions of the star–ring, cavitation occurs inside the chamber. In an earlier work, in the estimation of gaps in transition contacts, we have first evaluated the stresses, deformations at all ideally form-closed active contacts in our chosen Gerotor pump using static structural analysis in the Ansys® environment. In the present work, to investigate the flow characteristics, including the formation of cavitations in the Gerotor pump, numerical analysis using the computational fluid dynamics tool in the Ansys® environment has been carried out. We analyze the flow process for the different angular positions of a star. Results obtained by the numerical analysis have good agreement with the flow patterns visualized experimentally.


Sign in / Sign up

Export Citation Format

Share Document