The Use of a Water/Lube Oil Heat Exchanger and Enhanced Cooling Water Heating to Increase Water and Lube Oil Heating Rates in Passenger Cars for Reduced Fuel Consumption and CO2 Emissions During Cold Start.

Author(s):  
Gordon E. Andrews ◽  
Ali. M. Ounzain ◽  
Hu Li ◽  
Margaret Bell ◽  
James Tate ◽  
...  
2022 ◽  
Vol 14 (2) ◽  
pp. 103-110
Author(s):  
Olha Sakno ◽  
◽  
Ievgen Medvediev ◽  
Peter Eliseyev ◽  
Serhii Tsymbal ◽  
...  

Uncertainty of data during environmental monitoring prevents with confidently and objectively assessing the current condition of the environment, the influence of factors affecting the fuel consumption of vehicles during operation. In addition, it creates a serious problem in assessing the dynamics of this condition, especially when it comes to relatively small levels of pollution that are on the verge of the sensitivity of systems and devices in the car. It is precisely these tasks that include the determination of atmospheric pollution by emissions from road transport in conditions of variable weather and climatic conditions, carrying out routine maintenance, changing a configuration of an engine or transmission. The article discusses: a) factors related to the characteristics and vehicle systems, with the maintenance of vehicles. This category focuses on fuel consumption and CO2 emissions, which depend on the technical and operational characteristics of the vehicle, its weight and aerodynamics, tires and auxiliary systems, the quality and timeliness of maintenance and repairs; b) factors related to the environment and traffic conditions (weather conditions, road morphology and traffic conditions); c) factors related to a driver of a vehicle (driver qualifications, driving style). Optimization of factors related to vehicle systems and their characteristics has been performed; by using fuel of optimum quality and driving efficiently, you can achieve savings in fuel (financial) consumption and CO2 emissions. The article proposes the solution to a complex problem of managing the transport process while minimizing fuel consumption and CO2 emissions from passenger cars, depending on the road and climatic conditions and the driver's qualifications, based on the theory of fuzzy sets. This approach made it possible to largely compensate for the lack of objective information about the process due to its uncertainty by subjective expert data.


2013 ◽  
Vol 10 (2) ◽  
pp. 174-182

One efficient way to control the CO2 emissions from the transport sector is the replacement of gasoline passenger cars by Diesel ones, which emit less CO2. This can be more effective in Finland, where the Diesel penetration is only 13.6%, which is very low compared to the other member countries of the European Union. The benefit in CO2 emitted from the new passenger cars is studied in the case of an increased Diesel penetration in this country, after several scenarios using the current and estimated future passenger car registrations and the fuel consumption. The results show that, in the case of new passenger cars, a CO2 benefit of more than 2.6% can be achieved, if a Diesel penetration higher than 30% occurs in the case of the current fleet. If the penetration reaches 50%, this benefit reaches 5.9%. Future total CO2 emissions from transport sector will increase significantly and can be partially controlled by the introduction of Diesel passenger cars or the replacement of heavy passenger cars by lighter ones.


2020 ◽  
Author(s):  
Timothy Schumaier ◽  
Matthew Bartlett ◽  
Alex Laugen ◽  
Timothy Scott ◽  
Jasbir Singh ◽  
...  

2013 ◽  
Vol 291-294 ◽  
pp. 1925-1929 ◽  
Author(s):  
Jing Shun Fu ◽  
Zheng Feng

Building an engine cooling system model by GT-cool to analyze the fuel consumption of vehicle cold start in the low temperature environment stage.Getting the relationship between fuel consumption of vehicle cold start and the temperature of cooling water by model calculation.Providing a basis for optimizing the design of the engine cooling system.


2021 ◽  
Author(s):  
Michał Gęca ◽  
Gojmir Radica

This paper examines the effect of an external preheating system for an internal combustion engine on fuel consumption, CO2 emissions, and cabin temperature of a Euro4 vehicle. A 1 kW electric system powered by 220 V was installed in series in the cooling system of a vehicle with a compression-ignition engine of 2.5 dm3 capacity. The tests were carried out in simulated urban driving conditions (distance of 4.2 km), extra-urban driving conditions (distance of 17 km), and during idling at cold-start temperatures ranging from -10 oC to 2 oC. Preheating the engine under simulated city conditions reduces fuel consumption by 2.64 dm3/100 km and increases the supply air temperature immediately after engine start-up. Due to the preheater being powered from an external power grid, the cost per trip and total CO2 emissions are increased. Assuming renewable energy sources, CO2 emissions would be reduced the most for the stationary tests after engine preheating. In contrast, emissions would be reduced the least for extra-urban driving.


2016 ◽  
Vol 179 ◽  
pp. 1152-1165 ◽  
Author(s):  
D. Tsokolis ◽  
S. Tsiakmakis ◽  
A. Dimaratos ◽  
G. Fontaras ◽  
P. Pistikopoulos ◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 7011
Author(s):  
Abdulaziz A. Alotaibi ◽  
Naif Alajlan

Numerous studies addressed the impacts of social development and economic growth on the environment. This paper presents a study about the inclusive impact of social and economic factors on the environment by analyzing the association between carbon dioxide (CO2) emissions and two socioeconomic indicators, namely, Human Development Index (HDI) and Legatum Prosperity Index (LPI), under the Environmental Kuznets Curve (EKC) framework. To this end, we developed a two-stage methodology. At first, a multivariate model was constructed that accurately explains CO2 emissions by selecting the appropriate set of control variables based on model quality statistics. The control variables include GDP per capita, urbanization, fossil fuel consumption, and trade openness. Then, quantile regression was used to empirically analyze the inclusive relationship between CO2 emissions and the socioeconomic indicators, which revealed many interesting results. First, decreasing CO2 emissions was coupled with inclusive socioeconomic development. Both LPI and HDI had a negative marginal relationship with CO2 emissions at quantiles from 0.2 to 1. Second, the EKC hypothesis was valid for G20 countries during the study period with an inflection point around quantile 0.15. Third, the fossil fuel consumption had a significant positive relation with CO2 emissions, whereas urbanization and trade openness had a negative relation during the study period. Finally, this study empirically indicates that effective policies and policy coordination on broad social, living, and economic dimensions can lead to reductions in CO2 emissions while preserving inclusive growth.


2021 ◽  
Vol 13 (11) ◽  
pp. 5957
Author(s):  
Tomas Mauder ◽  
Michal Brezina

Production of overall CO2 emissions has exhibited a significant reduction in almost every industry in the last decades. The steelmaking industry is still one of the most significant producers of CO2 emissions worldwide. The processes and facilities used at steel plants, such as the blast furnace and the electric arc furnace, generate a large amount of waste heat, which can be recovered and meaningfully used. Another way to reduce CO2 emissions is to reduce the number of low-quality steel products which, due to poor final quality, need to be scrapped. Steel product quality is strongly dependent on the continuous casting process where the molten steel is converted into solid semifinished products such as slabs, blooms, or billets. It was observed that the crack formation can be affected by the water cooling temperature used for spray cooling which varies during the year. Therefore, a proper determination of the cooling water temperature can prevent the occurrence of steel defects. The main idea is based on the utilization of the waste heat inside the steel plant for preheating the cooling water used for spray cooling in the Continuous Casting (CC) process in terms of water temperature stabilization. This approach can improve the quality of steel and contribute to the reduction of greenhouse gas emissions. The results show that, in the case of billet casting, a reduction in the cooling water consumption can be also reached. The presented tools for achieving these goals are based on laboratory experiments and on advanced numerical simulations of the casting process.


Sign in / Sign up

Export Citation Format

Share Document