Combustion Noise Prediction in a Small Diesel Engine Finalized to the Optimization of the Fuel Injection Strategy

Author(s):  
D. Siano ◽  
F. Bozza
2013 ◽  
Vol 17 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Zhixia He ◽  
Tiemin Xuan ◽  
Zhaochen Jiang ◽  
Yi Yan

2005 ◽  
Author(s):  
Ali Mohammadi ◽  
Takuji Ishiyama ◽  
Takaaki Kakuta ◽  
Sung-Sub Kee

Author(s):  
Sungjun Yoon ◽  
Hongsuk Kim ◽  
Daesik Kim ◽  
Sungwook Park

Stringent emission regulations (e.g., Euro-6) force automotive manufacturers to equip DPF (diesel particulate filter) on diesel cars. Generally, post injection is used as a method to regenerate DPF. However, it is known that post injection deteriorates specific fuel consumption and causes oil dilution for some operating conditions. Thus, an injection strategy for regeneration becomes one of key technologies for diesel powertrain equipped with a DPF. This paper presents correlations between fuel injection strategy and exhaust gas temperature for DPF regeneration. Experimental apparatus consists of a single cylinder diesel engine, a DC dynamometer, an emission test bench, and an engine control system. In the present study, post injection timing covers from 40 deg aTDC to 110 deg aTDC and double post injection was considered. In addition, effects of injection pressures were investigated. The engine load was varied from low-load to mid-load and fuel amount of post injection was increased up to 10mg/stk. Oil dilution during fuel injection and combustion processes were estimated by diesel loss measured by comparing two global equivalences ratios; one is measured from Lambda sensor installed at exhaust port, the other one is estimated from intake air mass and injected fuel mass. In the present study, the differences in global equivalence ratios were mainly caused from oil dilution during post injection. The experimental results of the present study suggest an optimal engine operating conditions including fuel injection strategy to get appropriate exhaust gas temperature for DPF regeneration. Experimental results of exhaust gas temperature distributions for various engine operating conditions were summarized. In addition, it was revealed that amounts of oil dilution were reduced by splitting post injection (i.e., double post injection). Effects of injection pressure on exhaust gas temperature were dependent on combustion phasing and injection strategies.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4023 ◽  
Author(s):  
Stefano d’Ambrosio ◽  
Alessandro Ferrari ◽  
Alessandro Mancarella ◽  
Salvatore Mancò ◽  
Antonio Mittica

An experimental investigation has been carried out to compare the performance and emissions of a low-compression-ratio Euro 5 diesel engine featuring high EGR rates, equipped with different injector technologies, i.e., solenoid, indirect-acting, and direct-acting piezoelectric. The comparisons, performed with reference to a state-of-the-art double fuel injection calibration, i.e., pilot-Main (pM), are presented in terms of engine-out exhaust emissions, combustion noise (CN), and fuel consumption, at low–medium engine speeds and loads. The differences in engine performance and emissions of the solenoidal, indirect-acting, and direct-acting piezoelectric injector setups have been found on the basis of experimental results to mainly depend on the specific features of their hydraulic circuits rather than on the considered injector driving system.


2012 ◽  
Vol 472-475 ◽  
pp. 1528-1531
Author(s):  
Tie Min Xuan ◽  
Zhi Xia He ◽  
Zhao Chen Jiang ◽  
Yi Yan

Numerical Investigation of Effect Pilot Injection on Combustion Noise and Exhaust Emission of Diesel Engine The traditional mechanical fuel supply system has already been no way to satisfy the requirement of more stringent fuel consumption and emission legislation. For the past few years, it has been a hot topic to improve performance of diesel engine combustion and emission through optimizing the fuel injection strategy. All kinds of spray, combustion and emission models were studied and then the numerical models for the single-injection combustion of 1015 diesel engine were setup and validated through comparing with results from experimental data. With the above verified models, different injection strategies were further investigated to get the effect mechanism of pilot injection (PI) timing and quantity on combustion noise and exhaust emission.


2019 ◽  
pp. 146808741986701 ◽  
Author(s):  
Santiago Molina ◽  
Antonio García ◽  
Javier Monsalve-Serrano ◽  
David Villalta

From the different power plants, the compression ignition diesel engines are considered the best alternative to be used in the transport sector due to its high efficiency. However, the current emission standards impose drastic reductions for the main pollutants, that is, NO x and soot, emitted by this type of engines. To accomplish with these restrictions, alternative combustion concepts as the premixed charge compression ignition are being investigated nowadays. The objective of this work is to evaluate the impact of different fuel injection strategies on the combustion performance and engine-out emissions of the premixed charge compression ignition combustion regime. For that, experimental measurements were carried out in a single-cylinder medium-duty compression ignition diesel engine at low-load operation. Different engine parameters as the injection pattern timing, main injection timing and main injection fuel quantity were sweep. The best injection strategy was determined by means of a methodology based on the evaluation of a merit function. The results suggest that the best injection strategy for the low-load premixed charge compression ignition operating condition investigated implies using a high injection pressure and a triple-injection event with a delayed main injection with almost 15% of the total fuel mass injected.


2019 ◽  
Vol 9 (3) ◽  
pp. 484 ◽  
Author(s):  
Giorgio Zamboni

Indicated pressure diagrams were measured during experimental campaigns on the control of fuel injection, turbocharging and hybrid exhaust gas recirculation systems in an automotive downsized diesel engine. Three-part load operating conditions were selected for four test sets, where strategies aimed at the reduction of NOX emissions and fuel consumption, limiting penalties in soot emissions and combustion noise were applied to the selected systems. Processing of in-cylinder pressure signal, its first derivative and curves of the rate of heat release allowed us to evaluate seven parameters related to the combustion centre and duration, maximum values of pressure, heat release and its first derivative, heat released in the premixed phase and a combustion noise indicator. Relationships between these quantities and engine operating, energy and environmental parameters were then obtained by referring to the four test sets. In the paper, the most significant links are presented and discussed, aiming at a better understanding of the influence of control variables on the combustion process and the effects on engine behaviour. The proposed methodology proved to be a consistent tool for this analysis, useful for supporting the application of alternative fuels or advanced combustion modes.


2021 ◽  
Vol 268 ◽  
pp. 01026
Author(s):  
Jizhou Zhang ◽  
Fuwu Yan ◽  
Yu Wang

For a certain type of direct injection diesel engine, a three-dimensional model of a single-cylinder complete combustion chamber and in-take/exhaust port was established. Three-dimensional Computational Fluid Dynamics (CFD) analysis software CONVERGE was used for simulation. The effects of fuel injection strategy and combustion chamber geometry on combustion emissions of diesel engine were studied while the combustion chamber volume, engine compression ratio, total fuel injection quantity and total injection duration were kept unchanged. The results show that the strategy of multiple injection and reasonable shape of combustion chamber can effectively increase the turbulent kinetic energy in cylinder, improve the uniformity of oil-gas mixing, reduce the emission of pollutants, and increase the quality of after injection can further reduce the emissions of NOx and soot.


Sign in / Sign up

Export Citation Format

Share Document