Optimized Exhaust After-Treatment System Solution for Indian Heavy Duty City Bus Application - The Challenges Involved and the Right Approach to Meet Future BS VI Emission Legislations and Real World Driving Emissions

2019 ◽  
Author(s):  
Ashraf Emran ◽  
Markus Ehrly ◽  
Rouble Sandhu ◽  
Rajesh Santhoji Kale ◽  
Vijay Sharma ◽  
...  
2003 ◽  
Vol 37 (37) ◽  
pp. 5247-5259 ◽  
Author(s):  
Urs Lehmann ◽  
Martin Mohr ◽  
Thomas Schweizer ◽  
Josef Rütter

Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121771
Author(s):  
Yu Jiang ◽  
Yi Tan ◽  
Jiacheng Yang ◽  
Georgios Karavalakis ◽  
Kent C. Johnson ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Marcus Larsson ◽  
Magnus Jonsson ◽  
Fredrik Warg ◽  
Kristian Karlsson

We propose a broadcast message forwarding algorithm for V2V communication in a platooning scenario for heavy duty trucks. The algorithm utilizes link information, which is piggybacked on the original data packet, to estimate which nodes are best suited to forward the packet. The aim is to reach all nodes in the platoon with as few forward messages as possible in order to avoid channel congestion. The algorithm is evaluated by simulation using real world V2V measurement data as input. We show that the algorithm performs almost as good as two ETSI standardized forwarding algorithms with respect to keeping the data age for the entire platoon at a low level. But when it comes to keeping the message intensity low, our algorithm outperforms the better of the ETSI algorithms by 35%.


Author(s):  
Arda Tezcan ◽  
Debbie Richards

Multi-User Virtual Environments (MUVEs) have been found to be engaging and provide an environment in which the elements of discovery, exploration and concept testing, fundamental to the field of science, can be experienced. Furthermore, MUVEs accommodate lifelike experiences with the benefit of the situated and distributed nature of cognition; they also provide virtual worlds to simulate the conditions that are not doable or practicable under real world circumstances making them very relevant to many other fields of study such as history, geography and foreign language learning. However, constructing MUVEs can be expensive and time consuming depending on the platform considered. Therefore, providing the most appropriate platform that requires minimal effort, cost and time will make MUVE deployment in the classroom faster and more viable. In this chapter, the authors provide a comparative study of prominent existing platforms for MUVEs that can be used to identify the right balance of functionality, flexibility, effort and cost for a given educational and technical context. A number of metrics are identified, described and used to enable the comparison. Platform assessment was done in four main metric groups: communication and interaction, characters, features and education. Communication and interaction metrics are used to assess how the communication and interaction is done within the examined platform. Character metrics are employed to measure avatar and agent affordances. Features metrics are defined to compare what the platform offers in terms of technology. Lastly, education metrics are used to identify the value of the associated platform for educational purposes.


2021 ◽  
Author(s):  
Chih-Kuan Yeh ◽  
Been Kim ◽  
Pradeep Ravikumar

Understanding complex machine learning models such as deep neural networks with explanations is crucial in various applications. Many explanations stem from the model perspective, and may not necessarily effectively communicate why the model is making its predictions at the right level of abstraction. For example, providing importance weights to individual pixels in an image can only express which parts of that particular image is important to the model, but humans may prefer an explanation which explains the prediction by concept-based thinking. In this work, we review the emerging area of concept based explanations. We start by introducing concept explanations including the class of Concept Activation Vectors (CAV) which characterize concepts using vectors in appropriate spaces of neural activations, and discuss different properties of useful concepts, and approaches to measure the usefulness of concept vectors. We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats. Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.


2021 ◽  
pp. 46-67
Author(s):  
Jason Brennan

Philosophers often try to “solve” democracy’s problems by arguing we need more and better democracy. They tend to think certain kinds of democratic systems could unleash the hidden “wisdom of the crowds.” Some defenders of democracy propose deliberative democracy and some extol the reliability of large groups. However, both ideas have limitations in the real world. This chapter objects to such arguments as they rely upon mistaken applications of certain mathematical theorems, or they end up retreating toward unrealistic ideals of how people ought to behave. In effect, they say that democracy would be wonderful if only people behaved the right way.


Author(s):  
George Scora ◽  
Kanok Boriboonsomsin ◽  
Thomas D. Durbin ◽  
Kent Johnson ◽  
Seungju Yoon ◽  
...  

Vehicle activity is an integral component in the estimation of mobile source emissions and the study of emission inventories. In the Environmental Protection Agency’s (EPA’s) Motor Vehicle Emission Simulator (MOVES) model and the California Air Resources Board’s (CARB’s) Emission Factor (EMFAC) model, vehicle activity is defined for source types, in which vehicles within a source type are assumed to have the same activity. In both of these models, source types for heavy-duty vehicles are limited in number and the assumption that the activity within these source types is similar may be inaccurate. The focus of this paper is to improve vehicle emission estimates by improving characterization of heavy-duty vehicle activity using vehicle vocation. This paper presents results and analysis from the collection of real-world activity data of 90 vehicles from 19 vehicle categories made up from a combination of vehicle vocation, gross vehicle weight, and geographical area— namely, line haul—out of state; line haul—in state; drayage—Northern California; drayage—Southern California; agricultural—Southern Central Valley; heavy construction; concrete mixers; food distribution; beverage distribution; local moving; airport shuttle; refuse; urban buses; express buses; freeway work; sweeping; municipal work; towing; and utility repair. Results show that real-world activity patterns of heavy-duty vehicles vary greatly by vocation and in some cases by geographic region. Vocation-specific activity information can be used to update assumptions in EPA’s MOVES model or CARB’s EMFAC model to address this variability in emission inventory development.


2018 ◽  
Author(s):  
Yong Sun ◽  
Saurabh Sharma ◽  
Bruce Vernham ◽  
Keiko Shibata ◽  
Scott Drennan

Sign in / Sign up

Export Citation Format

Share Document