Developments in Lightweight Aluminum Alloys for Automotive Applications: 2001-2005

2006 ◽  

The use of lightweight materials in automotive application has greatly increased in the past two decades. A need to meet customer demands for vehicle safety, performance and fuel efficiency has accelerated the development, evaluation and employment of new lightweight materials and processes. The 50 SAE Technical papers contained in this publication document the processes, guidelines, and physical and mechanical properties that can be applied to the selection and design of lightweight components for automotive applications. The book starts off with an introduction section containing two 1920 papers that examine the use of aluminum in automobiles.

2013 ◽  
Vol 688 ◽  
pp. 146-151 ◽  
Author(s):  
Pavel Sokol ◽  
Rostislav Drochytka ◽  
Vit Cerný ◽  
Ester Helanová

During rehabilitation work are often strict requirements on the use of high quality lightweight materials, including aggregate. Due the constantly increasing social pressure on the optimal use of secondary raw materials is therefore most appropriate to exploit the potential of fly ash as mineral residue from the combustion of ground coal in power plants. Especially filter fly ash has proven to be an adequate substitute for traditional materials in the past. This article deals with the evaluation of physical and mechanical properties of cold-consolidated pellets based on conventional and fluidized fly ash with various cement addition.


1987 ◽  
Vol 33 (S1) ◽  
pp. 78-85 ◽  
Author(s):  
Lorne W. Gold

AbstractThe literature reporting scientific and engineering investigations on ice has grown rapidly in the past 50 years, and increased by a factor of at least ten in the past 20 years. A review is presented of advances in engineering for ice problems during this period, including ice formation in rivers, lakes, and oceans; ice forces on structures; bearing capacity of ice covers; and atmospheric icing. The difficulties faced by engineers due to the unique physical and mechanical properties of ice and its normal thermal state are emphasized.


2005 ◽  
Vol 78 (2) ◽  
pp. 355-390 ◽  
Author(s):  
Gui-Yang Li ◽  
J. L. Koenig

Abstract The aging of rubber caused by oxidative degradation leads to the deterioration in the physical and mechanical properties of vulcanized rubbers. In an effort to improve the oxidative stability of rubbers and elastomers, considerable amount of work has been carried out over the past 50 years (especially in the most recent 5 years) in order to understand degradation modes and effects in rubber due to the action of oxygen and ozone in the air. Different mechanisms have been proposed to interpret the experimental data relative to the oxidation of rubber. The diffusion limited theory has been widely used in the literature and verified by many experiments. Various instrumental techniques have been utilized to characterize the oxidation and degradation and their mechanisms in rubber compounds. Recently, FTIR imaging has demonstrated a unique combination of spectral and spatial resolution which allows not only the identification of the oxidation products but also their spatial distribution from the oxygen penetrating surfaces. This critical review will cover the major developments in our understanding of the oxidation of rubbers.


2020 ◽  
pp. 163-180
Author(s):  
M.Y. Kolawole ◽  
J.O. Aweda ◽  
S. Abdulkareem ◽  
S.A. Bello ◽  
A. Ali ◽  
...  

Nowadays, low-cost particulate reinforced metal matrix composites with improve mechanical properties are highly sought in various industrial and critical engineering applications including automotive and aerospace sectors. Meanwhile, increasing consumption rate of African giant land snail (Archachatina marginata) had been posing disposal challenges of its shells. Therefore, this paper tends to investigates the influence of waste snail shells particulates on the physical and mechanical properties of recycled aluminum- silicon alloy matrix. Different weight proportions i.e. (0 - 7.5) wt% of calcined snail shell particles at an interval of 1.5 wt% were successfully incorporated into Al-Si alloy matrix melted at 750 ?C using stir-casting route. The microstructure, physical and mechanical properties of the resulting composites were examined and presented. Microstructural examination shows fairly uniform dispersion of snail shell particles in the aluminium alloy matrix intermingled with aluminium-silicon dendrites. Mechanical properties such as hardness, impact, compressive and tensile strengths increased with increasing addition of calcined snail shell particulate up to 6 wt% while density and elongation decreases. The total equivalent density reduction of 5.4% in composites compared to unreinforced alloy was obtained at 7.5 wt% snail shell addition. The maximum hardness, impact, compressive and tensile strengths obtained are 118?4 HV, 88 J, 552?20 MPa and 211 ? 4.8 MPa equivalent to 21, 25, 19 and 36 percent increase respectively relative to un-reinforced aluminium-silicon alloy. Hence, mechanical and physical properties of Al-Si alloy can be enhanced using calcined snail shell particulates which can widen its application in automotive industries.


2017 ◽  
Vol 67 (328) ◽  
pp. 133 ◽  
Author(s):  
D. Dominguez ◽  
V. P. Muñoz ◽  
V. L. Muñoz

Fired clay bricks are widely developed by focusing on the use of several wastes with the aim of obtaining lightweight materials. Despite research having provided positives experiences, most of these showed an important reduction of compression strength. This issue must be highlighted in particular, when seismic areas are considered. However, despite compression strength decreases in some cases the energy that can be absorbed by the brick might be increased. Hence, this paper tests and shows physical and mechanical properties of newly fired clays made by adding different percentages of sawdust. Results are used for calculating the response of an individual one-story house to medium intensity earthquakes. It is concluded that the use of bricks, with up to 5% sawdust added, is an ecological way for recycling these agro-wastes, while its behaviour against earthquakes performs better than other solutions, such as common perforated bricks.


2005 ◽  
Vol 78 (3) ◽  
pp. 355-390 ◽  
Author(s):  
Gui-Yang Li ◽  
J. L. Koenig

Abstract The aging of rubber caused by oxidative degradation leads to the deterioration in the physical and mechanical properties of vulcanized rubbers. In an effort to improve the oxidative stability of rubbers and elastomers, considerable amount of work has been carried out over the past 50 years (especially in the most recent 5 years) in order to understand degradation modes and effects in rubber due to the action of oxygen and ozone in the air. Different mechanisms have been proposed to interpret the experimental data relative to the oxidation of rubber. The diffusion limited theory has been widely used in the literature and verified by many experiments. Various instrumental techniques have been utilized to characterize the oxidation and degradation and their mechanisms in rubber compounds. Recently, FTIR imaging has demonstrated a unique combination of spectral and spatial resolution which allows not only the identification of the oxidation products but also their spatial distribution from the oxygen penetrating surfaces. This critical review will cover the major developments in our understanding of the oxidation of rubbers.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Aditya Noor ◽  
Nurul Muhayat ◽  
. Triyono

<p><em>Friction stir spot welding (FSSW) is one of the development of solid state welding to joint lightweight materials such as aluminium. In the automotive industry, lightweight materials are needed in the structure of vehicle construction to improve efficiency in vehicles. This research aims to find out how the effect of rotational speed and dwell time on physical and mechanical properties on the weld joint of aluminium 1100 with Zn interlayer addition. Variations used in rotational speed 1000, 1250, 1600 rpm and dwell time 6, 7, 8 s. Pullout fracture occur in tensile tests that are getting bigger with increasing rotational speed and dwell time. The results of SEM and EDS observations showed that the metallurgical bonded zone increased and kept the hook defect away. The spread of Zn in the stir zone area causes the formation of solid Al-Zn phase in a solid solution. The hook defect filled with Zn can minimize cracks that occur, so increased the tensile shear load. The highest tensile shear load value of FSSW AA1100 without Zn interlayer is 3.61 kN, while the FSSW AA1100 with Zn interlayer addition is 4.34 kN.</em></p>


Fibers ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 37
Author(s):  
Huyen Bui ◽  
Nassim Sebaibi ◽  
Mohamed Boutouil ◽  
Daniel Levacher

In order to reduce the dependency on conventional materials and negative environmental impacts, one of the main responsibilities of the construction field is to find new eco-friendly resources to replace the traditional materials partially. Natural fibers were known as potential candidates for the reinforcement of structures in civil engineering by virtue of their advantages. Among the different kinds of vegetable fibers, coconut fiber has been exploited in a limited way over the past few years. This paper aims at evaluating the different properties of local coconut fibers (Vietnam). Several laboratory tests provide geometrical, physical, mechanical properties and durability properties that are compared with literature results obtained from similar natural fibers. The local coconut fibers tested demonstrated properties suitable for reinforced mortars. With adequate control of their preparation, they could be reused in the manufacture of mortars in the construction.


2015 ◽  
Vol 3 (27) ◽  
pp. 14307-14317 ◽  
Author(s):  
Dong Wang ◽  
Lei Song ◽  
Keqing Zhou ◽  
Xiaojuan Yu ◽  
Yuan Hu ◽  
...  

Polymer/graphene-analogous nanosheet composites have great potential for improving their physical and mechanical properties during the past few years.


Sign in / Sign up

Export Citation Format

Share Document