Material Optimization of Rail Track Welding and Validation using Finite Element Simulation

Author(s):  
R. Manivel ◽  
R. Shanmuga Prakash

Railways provide a long and continuous journey for passengers and goods at an affordable cost. The rails and rail joints should be of high quality to ensure a safer transportation of people and goods. The tracks (rail) are made of alloys of iron and are fastened to other rails using fasteners. Nowadays, these fasteners are replaced with welded joints because of rising maintenance issues. Thermite welding is a globally adopted process for welding the rails. This article aims to best utilise the Aluminium composites for the welding of rails. The composites were prepared using stir casting route and a wear test was done on the casted samples to test their durability. Also, some of the mechanical properties of the composite material were found. The rail and track models were made and imported into ANSYS Finite Element Analysis software. The predicted results show that aluminium composites have considerable strength when compared to any other composite material.

2017 ◽  
Vol 54 (1) ◽  
pp. 180-179 ◽  
Author(s):  
Raul Cormos ◽  
Horia Petrescu ◽  
Anton Hadar ◽  
Gorge Mihail Adir ◽  
Horia Gheorghiu

The main purpose of this paper is the study the behavior of four multilayered composite material configurations subjected to different levels of low velocity impacts, in the linear elastc domain of the materials, using experimental testing and finite element simulation. The experimental results obtained after testing, are used to validate the finite element models of the four composite multilayered honeycomb structures, which makes possible the study, using only the finite element method, of these composite materials for a give application.


Author(s):  
Devon Keane ◽  
Domenick Avanzi ◽  
Lance Evans ◽  
Zahra Shahbazi

There are many instances where creating finite element analysis (FEA) requires extensive time and effort. Such instances include finite element analysis of tree branches with complex geometries and varying mechanical properties. In this paper, we discuss the development of Immediate-TREE, a program and its associated Guided User Interface (GUI) that provides researchers a fast and efficient finite elemental analysis of tree branches. This process was discussed in which finite element analysis were automated with the use of computer generated Python files. Immediate-TREE uses tree branch’s data (geometry, mechanical properties and etc.) provided through experiment and generates Python files, which were then run in finite element analysis software (Abaqus) to complete the analysis. Immediate-TREE is approximately 240 times faster than creating the model directly in the FEA software (Abaqus). The process used to develop Immediate-TREE can be applied to other finite element analysis of biological systems such as bone and tooth.


2013 ◽  
Vol 641-642 ◽  
pp. 488-491
Author(s):  
Wei Yuan ◽  
Li Hua Xie ◽  
Gai Mei Zhang ◽  
Da Zhi Liao ◽  
Jian Dong Lu

According to the formula of the resistance to internal pressure, the main factors of the strength of the beer bottles are analyzed. Using ANSYS finite element analysis software, PET beer bottles damaged boundary conditions are determined. PET beer bottle model is established, and have the stress analysis. The internal pressure and the bottle top pressure are applied on PET beer bottles. PET beer bottles strain is analyzed in two loads with different thickness and different bottle diameter. Thickness and bottle diameter influence of the mechanical properties of PET beer bottles are obtained. It provides a method and basis of the structure to optimize the design of PET beer bottles.


2012 ◽  
Vol 459 ◽  
pp. 324-328 ◽  
Author(s):  
Ke Dian Wang ◽  
Bin Liu ◽  
Wen Qiang Duan ◽  
Wen Jun Wang

In this paper, ANSYS, a finite element analysis software is used to simulate the change of temperature field in micro-hole processing with millisecond laser, which determines the diameter and depth of the hole drilled. The relationship between processing parameters and the hole size is plotted, so as to achieve size control of a micro-hole processing. Compared with experimental results, simulation is effective for laser processing of micro-hole and can be referenced to choose the best processing parameters.


2012 ◽  
Vol 594-597 ◽  
pp. 1498-1503
Author(s):  
Heng Shan Gao ◽  
Tie Ying Li

In this paper, using the universal finite element analysis software SAP2000 to build a large span cable-stayed bridge with finite element model, using a stepwise analysis finite element method to study the concrete shrinkage and creep efforts on the main beam inner force and deformation, cable tension during the cable-stayed bridge construction process and after the bridge. Research results show that the effects of shrinkage and creep in the finished bridge cannot be ignored, and the results can be used as reference for the design of similar projects.


2014 ◽  
Vol 580-583 ◽  
pp. 1358-1363
Author(s):  
He Ping Zhou ◽  
En Yong Wang ◽  
Yu Xia Hu ◽  
Zhi Qiang Liu ◽  
Jian Bo Cui

In this article, we focused on changes of mechanical properties in lining of tunnel caused by loess cavity. We established a corresponding model and carried out numerical analysis by using finite element analysis software ADINA, considered the effect of different locations, different size of the cavity and depth of the tunnel. The results showed that change of the mechanical properties has the largest effect on the lining at the arch foot nearby the loess cavity, and it grows with the growth of the cavity‘s size and depth of the tunnel.


Author(s):  
S. Madhusudhanan ◽  
I. Rajendran ◽  
B. Raguganeshkumar

Steering knuckle is a prominent component of an automobile steering system. It is subjected cyclic loads from the suspension system during its service life. The Spheroid Graphite (SG) iron is the most commonly used material for manufacturing the steering knuckle. Fatigue behaviour is therefore a key consideration in its design and performance evaluation. Geometric modelling and stress analysis of such steering knuckle using finite element analysis software is carried out. Then the fatigue life of steering knuckle made from SG iron has been evaluated under the different load conditions and the results have been compared.


2011 ◽  
Vol 101-102 ◽  
pp. 1096-1100
Author(s):  
Quan Rong Jing ◽  
Feng Xu ◽  
De Gao

Through the test of mechanical properties of the straw-biodegradable tableware, the relationship between performance and processing technology was analyzed and the optimal solution was obtained. And using finite element analysis software, the internal stress distribution under the specific load was obtained based on mechanical properties, more valuable reference method about tableware design was provided through studying the changing intensity.


2015 ◽  
Vol 1091 ◽  
pp. 83-87
Author(s):  
Xi Bing Hu ◽  
Fei Hua Yi ◽  
Da Long Zhang ◽  
Hui Mao

The finite element models of the planar K-joint are established based on the finite element analysis software ANSYS. The bracing members are under the action of axial force and moment. Different rotational deformation values of the joint with different geometric parameters are reached with calculation and analysis. Results show that the deformation value approximate linearly increased with the increasing load of the bracing member. It also shows that the influence of the bracing member diameter and wall thickness is larger on rotational deformation values and the rotational deformation of the part of the K-joint is greatly influenced by the deformation of joint region.


2019 ◽  
Vol 814 ◽  
pp. 132-136
Author(s):  
Run Sheng Wen ◽  
Yang Zhang

Using ABAQUS finite element analysis software, the bending model of TC4 titanium alloy was established to study the stress distribution and obtain the maximum compressive displacement by limiting its yield strength. Therefore, the applicable properties of the materials are evaluated to provide a basis for material optimization.


Sign in / Sign up

Export Citation Format

Share Document