scholarly journals Isolation, Selection and Identification of Polyaromatic Hydrocarbons (PAHs) Degrading Bacteria from Heavy Oil Waste (HOW)-Contaminated Soil

2020 ◽  
Vol 27 (2) ◽  
pp. 142
Author(s):  
Mohamad Yani ◽  
Charlena Charlena ◽  
Zainal Alim Mas’ud ◽  
Iswandi Anas ◽  
Yadi Setiadi ◽  
...  

The heavy oil waste (HOW) containing polyaromatic hydrocarbon (PAHs) is a persistent organic pollutants (POPs) that difficult to degrade. The new PAH degrading consortium was investigated from HOW contaminated soil in North Sumatera of  Indonesia. The isolation, selection and identification of polyaromatic hydrocarbon degrading bacteria from soil contaminated by HOW was conducted to solve a bioremediation process. The isolation microbes from soil contaminated by HOW was performed using a minimum ONR7a media and followed on marine agar media for purification purposes. From the performed isolation results, 11 isolates were able to degrade PAHs compounds, such as phenanthrene, dibenzothiophene, or fluorene compounds. They grew at pH range of 4.8-8.2 and performed on emulsification activity in paraffin from 0.150-0.662. Three of them showed the best performance on HOW biodegradation capability and then successfully selected and identified as Salipiger sp., Bacillus altitudinis, and Ochrobactrum anthropi. using 16S rDNA. The HOW biodegradation as TPH-degradation were 38.66%, 59.60%, and 47.16%, respectively. Those isolated bacteria could potentially be as bioremediation agents to develop on bioremediation process for soils contaminated by HOW.

2019 ◽  
Vol 10 (08) ◽  
pp. 20203-20211 ◽  
Author(s):  
Mohan Lal Kuri ◽  
Vidhya Kumari ◽  
Shikha Roy

Contamination of soil, water and air due to hydrocarbons are a global issue and bioremediation provides probably the best way to remediate the contaminants. The current study shows the biodegradation of crude oil, diesel and used engine oil by a newly isolated Phenylobacterium korensee from contaminated soil of Bahror, Alwar, Rajasthan. Hydrocarbon degrading strain was screened on BHA (Bushnell Haas Agar) media supplemented with 2T engine oil as sole carbon source. The strain was found to be degrading at 1%, 4% and 10% of used 2T engine oil respectively after 14 days. Degradation was confirmed both gravimetrically and by Gas Chromatography Mass Spectroscopy analysis. The degradation was found very well at long term basis. The optimization of growth also studied at temperature and pH basis also. The significance of the study is that the percentage degradation of the complex petroleum supplements used in the study was found to be far higher than some of the previously reported values and this bacterial strain was firstly found from this contaminated site.


2021 ◽  
Vol 14 ◽  
pp. 117863612110242
Author(s):  
Sonal Suman ◽  
Tanuja

DDT is one of the most persistent pesticides among all the different types of organo-chlorine pesticides used. Among all the degradation methods, bacterial degradation of DDT is most effective. The present study was conducted to isolate different bacteria present in waste samples which have the ability to degrade DDT present in the soil in the minimum possible period of time and to observe the effect of different physical and chemical properties of the soil samples. Many pesticide degrading bacteria were isolated and identified through cultural, biochemical tests and further identified by 16S RNA sequencing method. The most potent strain DDT 1 growth in mineral salt medium supplemented with DDT as the only source of carbon (5-100 PPM) and was monitored at an optical density of 600 nm. The growth parameters at different physio-chemical conditions were further optimized. The result showed that Enterobacter cloacae had maximum growth in 15 days. FTIR analysis of the residual DDT after 15 days incubation showed that Enterobacter cloacae was able to degrade pesticide into its further metabolites of DDD, DDE, DDNU and other components can be used for biodegradation of DDT present in contaminated soil and water ecosystems.


2021 ◽  
Vol 11 (14) ◽  
pp. 6305
Author(s):  
Xiaosen Li ◽  
Yakui Chen ◽  
Xianyuan Du ◽  
Jin Zheng ◽  
Diannan Lu ◽  
...  

The study applied microbial molecular biological techniques to show that 2.5% to 3.0% (w/w) of diesel in the soil reduced the types and number of bacteria in the soil and destroyed the microbial communities responsible for the nitrogen cycle. In the meantime, the alkane degradation gene alkB and polycyclic aromatic hydrocarbons (PAHs) degradation gene nah evolved in the contaminated soil. We evaluated four different remediation procedures, in which the biostimulation-bioaugmentation joint process reached the highest degradation rate of diesel, 59.6 ± 0.25% in 27 days. Miseq sequencing and quantitative polymerase chain reaction (qPCR) showed that compared with uncontaminated soil, repaired soil provides abundant functional genes related to soil nitrogen cycle, and the most significant lifting effect on diesel degrading bacteria γ-proteobacteria. Quantitative analysis of degrading functional genes shows that degrading bacteria can be colonized in the soil. Gas chromatography-mass spectrometry (GC-MS) results show that the components remaining in the soil after diesel degradation are alcohol, lipids and a small amount of fatty amine compounds, which have very low toxicity to plants. In an on-site remediation experiment, the diesel content decreased from 2.7% ± 0.3 to 1.12% ± 0.1 after one month of treatment. The soil physical and chemical properties returned to normal levels, confirming the practicability of the biosimulation-bioaugmentation jointed remediation process.


2021 ◽  
Vol 766 (1) ◽  
pp. 012096
Author(s):  
Xiaona Wei ◽  
Pai Peng ◽  
Yao Meng ◽  
TingTing Li ◽  
ZhiPing Fan ◽  
...  

2018 ◽  
Vol 59 (2) ◽  
pp. 166-180
Author(s):  
Wael S. El-Sayed ◽  
Yasser Elbahloul ◽  
Mohamed E. Saad ◽  
Ahmed M. Hanafy ◽  
Abdelrahman H. Hegazi ◽  
...  

2019 ◽  
Vol 20 (1) ◽  
pp. 1
Author(s):  
Rita Susilawati

A laboratory experiment was set up to demonstrate the capability of microbe to remediate petroleum hydrocarbon contaminated beach sand. Oil contaminated soil was used as a source of inoculum for hydrocarbon degrading bacteria (HDB) while oil contaminated beach sand was used as remediation object. The growth of HDB in the inocula was enriched and stimulated through the addition of nutrient in the form of vitamin and mineral as well the addition of oil waste as a source of carbon. Experiment took place in the course of approximately five weeks. Microscopic observation clearly showed the interaction between microbe and oil contaminant both in enrichment and bioremediation samples. The result of the experiment also suggests that approximately 25% of the petroleum hydrocarbon mass in the contaminated beach sand was biodegraded over the course of one month. Overall, the results of this experiment suggest the potential of bioremediation method to treat petroleum hydrocarbon polluted environment.Keywords: bacteria, bioremediation, hydrocarbon DOI: 10.33332/jgsm.2019.v20.1.1-7


RSC Advances ◽  
2019 ◽  
Vol 9 (60) ◽  
pp. 35304-35311 ◽  
Author(s):  
Bofan Zhang ◽  
Liang Zhang ◽  
Xiuxia Zhang

The immobilization of bacteria on biochar was effective in reducing TPHs, n-alkanes with C12–18 and maintaining the balance of the soil ecosystem.


Sign in / Sign up

Export Citation Format

Share Document