scholarly journals Effect of Particle Size of Ceria Coated Silica and Polishing Pressure on Chemical Mechanical Polishing of Oxide Film

2006 ◽  
Vol 7 (4) ◽  
pp. 167-172 ◽  
Author(s):  
Hwan-Chul Kim ◽  
Hyung-Mi Lim ◽  
Dae-Sung Kim ◽  
Seung-Ho Lee
Author(s):  
Fan Xu ◽  
Weilei Wang ◽  
Aoxue Xu ◽  
Daohuan Feng ◽  
Weili Liu ◽  
...  

Abstract This study investigated the effects of particle size and pH of SiO2-based slurry on chemical mechanical polishing for SiO2 film. It was found that the removal rates and surface roughness of the material was highly dependent on the particle size and pH. As the particle size varied, the main polishing mechanism provided the activation energy to mechanical erasure. In addition, pH affected the particle size and Zeta potential, which had an important effect on the strength of the mechanical and chemical action of the chemical mechanical polishing. The change in mechanical action greatly influenced the removal rate. According to the experimental results, the best polishing of SiO2 film was achieved with 40 nm particle size SiO2 abrasives when the pH was 4.


2000 ◽  
Vol 147 (9) ◽  
pp. 3523 ◽  
Author(s):  
G. B. Basim ◽  
J. J. Adler ◽  
U. Mahajan ◽  
R. K. Singh ◽  
B. M. Moudgil

1999 ◽  
Vol 566 ◽  
Author(s):  
Marc Bielmann ◽  
Uday Mahajan ◽  
Rajiv K. Singh

Abrasive particle size plays a critical role in controlling the polishing rate and the surface roughness during chemical mechanical polishing (CMP) of interconnect materials during semiconductor processing. Earlier reports on the effect of particle size on polishing of silica show contradictory conclusions. We have conducted controlled measurements to determine the effect of alumina particle size during polishing of tungsten. Alumina particles of similar phase and shape with size varying from 0.1 μm to 10 μm diameter have been used in these experiments. The polishing experiments showed that the local roughness of the polished tungsten surfaces was insensitive to alumina particle size. The tungsten removal rate was found to increase with decreasing particle size and increased solids loading. These results suggest that the removal rate mechanism is not a scratching type process, but may be related to the contact surface area between particles and polished surface controlling the reaction rate. The concept developed in our work showing that the removal rate is controlled by the contact surface area between particles and polished surface is in agreement with the different explanations for tungsten removal.


1999 ◽  
Vol 566 ◽  
Author(s):  
Uday Mahajan ◽  
Marc Bielmann ◽  
Rajiv K. Singh

In this study, we have characterized the effects of abrasive properties, primarily particle size, on the Chemical Mechanical Polishing (CMP) of oxide films. Sol-gel silica particles with very narrow size distributions were used for preparing the polishing slurries. The results indicate that as particle size increases, there is a transition in the mechanism of material removal from a surface area based mechanism to an indentation-based mechanism. In addition, the surface morphology of the polished samples was characterized, with the results showing that particles larger than 0.5 μm are detrimental to the quality of the SiO2 surface.


2020 ◽  
Vol 866 ◽  
pp. 115-124
Author(s):  
Zhan Kui Wang ◽  
Ming Hua Pang ◽  
Jian Xiu Su ◽  
Jian Guo Yao

In this paper, a series of chemical mechanical polishing (CMP) experiments for magnesia alumina (Mg-Al) spinel were carried out with different abrasives, and the materials removal rate (MRR) and surface quality was evaluated to explore their different effects. The scanning electron microscope (SEM) and laser particle size analyzer were also employed to test the micro-shape and size distribution of abrasives. Then, the mechanism of different effects with different abrasives was analyzed in CMP for Mg-Al spinel. Those experimental results suggest that different subjecting pressure ratios of abrasives to polishing pad with different abrasive are the key factors leading to difference polishing performances in CMP.


2008 ◽  
Vol 373-374 ◽  
pp. 820-823
Author(s):  
Sheng Li Wang ◽  
Y.J. Yuan ◽  
Yu Ling Liu ◽  
X.H. Niu

Chemical mechanical polishing (CMP) of copper films in alkaline slurries was investigated. In the copper CMP, the slurry was made by adding colloidal silica abrasive to de-ionized water.The organic alkali was added to adjust the pH, H2O2 was used as an oxidizer.The effects of varying polishing temperature, polishing pressure, slurry flow rate, organic alkali concentration and oxidizer concentration on removal rate were investigated in order to determine the optimum conditions for those parameters. It is shown the chemical composition of the slurry was 2%~3% oxidizer concentration, 3% organic alkali concentration and proper amount surfactant is reasonable. The solid concentration of the polishing slurry was fixed at 20% by weight. The removal rate of copper could reach 700nm/min and the surface roughness after CMP was 0.49nm.


2014 ◽  
Vol 538 ◽  
pp. 40-43
Author(s):  
Hong Wei Du ◽  
Yan Ni Chen

In this paper, material removal mechanism of monocrystalline silicon by chemical etching with different solutions were studied to find effective oxidant and stabilizer. Material removal mechanism by mechanical loads was analyzed based on the measured acoustic signals in the scratching processes and the observation on the scratched surfaces of silicon wafers. The chemical mechanical polishing (CMP) processes of monocrystalline silicon wafers were analyzed in detail according to the observation and measurement of the polished surfaces with XRD. The results show that H2O2 is effective oxidant and KOH stabilizer. In a certain range, the higher concentration of oxidant, the higher material removal rate; the higher the polishing liquid PH value, the higher material removal rate. The polishing pressure is an important factor to obtain ultra-smooth surface without damage. Experimental results obtained silicon polishing pressure shall not exceed 42.5kPa.


Sign in / Sign up

Export Citation Format

Share Document