Effect of Particle Size During Tungsten Chemical Mechanical Polishing

1999 ◽  
Vol 566 ◽  
Author(s):  
Marc Bielmann ◽  
Uday Mahajan ◽  
Rajiv K. Singh

Abrasive particle size plays a critical role in controlling the polishing rate and the surface roughness during chemical mechanical polishing (CMP) of interconnect materials during semiconductor processing. Earlier reports on the effect of particle size on polishing of silica show contradictory conclusions. We have conducted controlled measurements to determine the effect of alumina particle size during polishing of tungsten. Alumina particles of similar phase and shape with size varying from 0.1 μm to 10 μm diameter have been used in these experiments. The polishing experiments showed that the local roughness of the polished tungsten surfaces was insensitive to alumina particle size. The tungsten removal rate was found to increase with decreasing particle size and increased solids loading. These results suggest that the removal rate mechanism is not a scratching type process, but may be related to the contact surface area between particles and polished surface controlling the reaction rate. The concept developed in our work showing that the removal rate is controlled by the contact surface area between particles and polished surface is in agreement with the different explanations for tungsten removal.

Author(s):  
Fan Xu ◽  
Weilei Wang ◽  
Aoxue Xu ◽  
Daohuan Feng ◽  
Weili Liu ◽  
...  

Abstract This study investigated the effects of particle size and pH of SiO2-based slurry on chemical mechanical polishing for SiO2 film. It was found that the removal rates and surface roughness of the material was highly dependent on the particle size and pH. As the particle size varied, the main polishing mechanism provided the activation energy to mechanical erasure. In addition, pH affected the particle size and Zeta potential, which had an important effect on the strength of the mechanical and chemical action of the chemical mechanical polishing. The change in mechanical action greatly influenced the removal rate. According to the experimental results, the best polishing of SiO2 film was achieved with 40 nm particle size SiO2 abrasives when the pH was 4.


1999 ◽  
Vol 566 ◽  
Author(s):  
Uday Mahajan ◽  
Marc Bielmann ◽  
Rajiv K. Singh

In this study, we have characterized the effects of abrasive properties, primarily particle size, on the Chemical Mechanical Polishing (CMP) of oxide films. Sol-gel silica particles with very narrow size distributions were used for preparing the polishing slurries. The results indicate that as particle size increases, there is a transition in the mechanism of material removal from a surface area based mechanism to an indentation-based mechanism. In addition, the surface morphology of the polished samples was characterized, with the results showing that particles larger than 0.5 μm are detrimental to the quality of the SiO2 surface.


2020 ◽  
Vol 866 ◽  
pp. 115-124
Author(s):  
Zhan Kui Wang ◽  
Ming Hua Pang ◽  
Jian Xiu Su ◽  
Jian Guo Yao

In this paper, a series of chemical mechanical polishing (CMP) experiments for magnesia alumina (Mg-Al) spinel were carried out with different abrasives, and the materials removal rate (MRR) and surface quality was evaluated to explore their different effects. The scanning electron microscope (SEM) and laser particle size analyzer were also employed to test the micro-shape and size distribution of abrasives. Then, the mechanism of different effects with different abrasives was analyzed in CMP for Mg-Al spinel. Those experimental results suggest that different subjecting pressure ratios of abrasives to polishing pad with different abrasive are the key factors leading to difference polishing performances in CMP.


1994 ◽  
Vol 337 ◽  
Author(s):  
Rahul Jairath ◽  
Mukesh Desai ◽  
Matt Stell ◽  
Robert Tolles ◽  
Debra Scherber-Brewer

ABSTRACTChemical mechanical polishing (CMP) is rapidly becoming the process of choice for planarizing dielectrics in very large scale integrated circuits. In addition, it is being used at an increasing rate in the removal of metals in order to define conducting levels. In the case of dielectric CMP, planarization ability is dictated by the mechanical aspects of polishing such as pad rigidity, polishing pressure and speed of the polishing platen, while inherent removal rate of the dielectric material is generally a function of the polishing chemistry. Polishing rate of both, dielectric and metallic films can be significantly increased by changing the nature of the dispersed abrasive in the slurry and that of the dispersing agent. However, such changes have profound implications to the surface quality, planarity, and cleaning of the polished surface. In addition, the polishing pad plays an important role in manufacturability of metal CMP processes. This work reviews the chemistry of polishing slurries containing silica, ceria and alumina abrasives for dielectric and metal CMP. Also, the contribution of the polishing pad to CMP processes is explained. The need for balancing the chemical and mechanical aspects of polishing in order to achieve overall planarization and pattern definition is demonstrated.


2011 ◽  
Vol 121-126 ◽  
pp. 3263-3267
Author(s):  
Wei Si Li ◽  
Dong Ming Guo ◽  
Zhu Ji Jin ◽  
Zhe Wang ◽  
Ze Wei Yuan

ECMP (Electro-Chemical Mechanical Polishing) presents high removal rate, low polishing pressure and good polished surface because the action of electrochemistry accelerates copper dissolution. It is considered to be a most promising novel Cu planarization process to replace traditional CMP (Chemical Mechanical Polishing). However, the micro asperity heights of coarse surface are often too small compared to the distance between anode and cathode, so the asperities are difficult to be selectively removed. In this paper, high dielectric constant abrasives were used in ECMP to solve this problem. High dielectric constant abrasives can improve the distribution of electric field, amplify the gradient of electric field and enhance the ability of selective removal. Based on the results of experiments, rutile TiO2, as one of high dielectric constant abrasives, is better than SiO2 and anatase TiO2 in ECMP process. The material removal rate of electrolyte containing rutile TiO2 is 0.078mg/min, and the surface roughness is Ra18.2nm.


Author(s):  
Kailiang Zhang ◽  
Zhitang Song ◽  
Songlin Feng

Silica sol nano-abrasives with large particle are prepared and characterized by TEM, PCS and Zeta potential in this paper. Results show that the silica sol nano-abrasives about 100nm are of higher stability (Zeta potential: −65mV) and narrow distribution of particle size. And then alkali CMP slurries for tungsten containing self-made silica sol nano-abrasives are prepared and applied. CMP results show that the removal rate has been improved to 367nm/min and the RMS of surface roughness has been reduced from 4.4nm to 0.80nm. In sum, one kind of alkali slurry containing 100nm silica sol for tungsten CMP is studied.


Sign in / Sign up

Export Citation Format

Share Document