5 Zones Thermocycler for Flow-Through On-Chip PCR

Author(s):  
Jana Felbel ◽  
Anett Reichert ◽  
Mark Kielpinski ◽  
Matthias Urban ◽  
Thomas Henkel

A microfluidic chip system for flow-through PCR reactions with an optimized thermal profile consisting of five temperature zones was presented. It allows the implementation of one PCR cycle in a half channel loop. In contrast, conventional systems with a three zones arrangement require a complete channel loop per cycle. Therefore, this arrangement increases the level of integration and allows the implementation of a 40 cycles flow-through thermocycler on the footprint of a microscope slide. To obtain a high throughput of samples in a small volume (10–100 nl), the fluidic chip device was designed to operate at segmented-flow conditions for PCR. That way, each droplet may contain a single sample that is independently processed while transported through the microchannel. To achieve stable fluidic conditions, the surface of the micro-channels was modified. In addition to the successful flow-through PCR reaction in the micro reactor, the detection of the tumor suppressor p53 for clinical diagnostics was demonstrated.

Author(s):  
Rhys-Sheffer Birthwright ◽  
Achille Messac ◽  
Timothy Harren-Lewis ◽  
Sirisha Rangavajhala

In this paper, we explore the design of thermoelectric (TE) windows for applications in building structures. Thermoelectric windows are equipped with TE units in the window frame to provide a heat absorption power, given a direct current input. We explore the design performance of the TE window to compensate for its own heat gains. While existing energy efficient windows have made advances towards reducing the heat transfer through them, they still depend on the building’s heating, ventilation and air-conditioning (HVAC) system to compensate for their heat gains. Our research explores the design of a window that can actively compensate for the passive heat flow through the window panes, and to do so with a better coefficient of performance (COP) than conventional HVAC systems. We also optimize the TE window design, and present results of the potential performance for practical applications in the building structure. For the geographic locations considered (Hawaii and Miami), the results are promising. Interestingly, the proposed TE window design actively compensates for the conduction heat gains with a COP greater than three, while that of conventional systems is typically less than three.


1960 ◽  
Vol 64 (594) ◽  
pp. 359-362 ◽  
Author(s):  
P. G. Morgan

In many cases of the flow through porous screens, one may consider it to be made up of a number of jets passing through the openings of the screen. These jets are separated by a series of wakes behind the solid parts of the screen. The majority of investigations on the flow through such screens have been concerned with the measurement of pressure drop and its variation with different flow conditions; it has been assumed that the pressure is discontinuous at the screen itself and that the pressure drop coefficient Δp/½ρυ2 provides sufficient information, where Δp is the pressure drop across the screen, ρ the density of the fluid, and υ the velocity of approach to the screen.


Author(s):  
Juan Yin ◽  
Yi-wu Weng

This paper investigated performance characteristics analysis of catalytic combustion by utilizing 1-D models incorporated heat and mass transfer correlations. The 1-D numerical results were compared with 2-D models studies and experimental data. The performance characteristics were mainly the effects of operating conditions on methane conversion rate. The comparable analysis confirmed that 1-D model can success in predicting performance of catalytic combustion when empiric inter-phase heat and mass transfer correlations are used and appropriate operating conditions are chosen.


Lab on a Chip ◽  
2012 ◽  
Vol 12 (11) ◽  
pp. 2000 ◽  
Author(s):  
Mariana Medina-Sánchez ◽  
Sandrine Miserere ◽  
Sergio Marín ◽  
Gemma Aragay ◽  
Arben Merkoçi

2014 ◽  
Vol 695 ◽  
pp. 393-397
Author(s):  
Elsa Syuhada Abdull Yamin ◽  
Nor Azwadi Che Sidik

The permeability of the blood in the artificial cancellous are affected by certain morphological aspects that include pore diameter, pore size, porosity and the bone surface area. In this study, computational fluid dynamics method is used to study the fluid flow through the cancellous structure. Result of the present work show that geometries with the same porosity and overall volume can have different permeability due to the differences in bone surface area. The hexahedron geometry has the highest permeability under stimulated blood flow conditions, where the cylindrical geometry has the lowest. Linear relationship is found between permeability and the two physical properties, bone surface area and the pore size.


1960 ◽  
Vol 64 (590) ◽  
pp. 103-105
Author(s):  
P. G. Morgan

The flow through porous screens has been widely studied from both the theoretical and experimental points of view. The most widely used types of screen are the wire mesh and the perforated plate, and the majority of the literature has been concerned with the former. Several attempts have been made to correlate the parameters governing the flow through such screens, i.e. the pressure drop, the flow conditions and the geometry of the mesh.


2015 ◽  
Vol 60 (1) ◽  
pp. 85-93 ◽  
Author(s):  
P. Migas

Abstract The rheological properties of liquid and semi-solid systems of slag and hot metal in a blast furnace are extremely important from the perspective of their dripping in the unit. The rheological nature and the values of the dynamic viscosity coefficient of liquid and semi-solid phases - slag and hot metal - determine the permeability of the zones in which those systems exist. The modelling of dripping processes and e.g. static and dynamic holding/retention of liquid in the bed, requires an accurate description of the rheological behaviour of slag and iron systems. Determining the liquid flow through the lump bed of the blast furnace is based on the assumption that liquids in the unit in the whole range of their occurrence are similar to a Newtonian ideal liquid. This study presents an analysis of the findings of high-temperature rheometric measurements of CaO-SiO2-Al2O3-MgO systems, liquid, semi-solid slags of the blast furnace type doped with TiO2 and solids in the form of TiN. The tests were performed within a temperature range of 1310-1490°C. Also measurement results for glycerol solutions with concentrations of 86% and 100% at the ambient temperature, simulating blast furnace slags with various contents of solids - PC, anthracite - are presented.


1959 ◽  
Vol 63 (584) ◽  
pp. 474-475 ◽  
Author(s):  
P. G. Morgan

The Flow of Fluids through screens has been widely studied with particular importance being attached to the measurement of the pressure drop caused by a screen and its relation to the screen geometry and the flow conditions. The majority of the investigations have been carried out on wire gauze screens mounted in ducts with air passing through them, the static pressure being measured on either side of the gauze. Attempts have been made by Weighardt Annand and Grootenhuisto correlate the gauze geometry with the pressure drop and to enable the pressure loss over a given screen and with given flow conditions to be predicted.


2007 ◽  
Vol 334-335 ◽  
pp. 437-440 ◽  
Author(s):  
Do Hoon Lee ◽  
Joon Ho Lee ◽  
Woo I. Lee

Liquid molding processes are becoming more popular among the composite manufacturing industries due to their versatility and economy among other merits. In analyzing the flow during the process, permeability is the most important parameter. Permeability has been regarded as a property of the porous medium. However, in many practical cases, the value may vary depending on the flow conditions such as the flow rate. It is speculated that this deviation is caused by inhomogeneous microstructure of the medium. In this study, numerical simulations as well as experimental measurements have been done to investigate the cause of deviation. Microstructure of porous medium was modeled as an array of porous cylinders. Resin flow through the array was simulated numerically. Simulations were performed for two different flow conditions, namely saturated flow and unsaturated flow. Based upon the results, permeabilities were estimated and compared for the two flow conditions. In addition, a model was proposed to predict the permeability for different flow conditions. Results showed that experimental data were in agreement with the prediction by the model.


Sign in / Sign up

Export Citation Format

Share Document