Hygroscopic properties of thermally modified false Iroko [Antiaris toxicara (Lesch)]

2021 ◽  
Vol 18 (1) ◽  
pp. 51-57
Author(s):  
F.A. Faruwa ◽  
K. Duru

The study investigated the use of thermal modification to improve the hygroscopic properties of False Iroko [Antiaris toxicaria (Lesch)]. Samples of Antiaris toxicara Lesch wood were subjected to thermal modification in a furnace at temperatures of 160, 180 and 200°C for 30 and 60 minutes. Results showed that wood properties were improved with exposure to different temperatures. Subsequent to the thermal process, a colour change from pale yellow to darkish brown was observed progressively with increase in temperature, accompanied by a weight loss in the range of 12.08% to 23.67%. The outcome of these treatments resulted in a decrease in volumetric swelling and increase in dimensional stability of modified wood; this can be attributed to observed decrease in moisture intake. The thermal modification of Antiaris toxicara Lesch wood affected the dimensional stability properties. Thus, due to significant changes via modification carried out on the selected species which is classified as lesser utilized wood species, lesser utilized wood,Antiaristoxicara Lesch wood is recommended for use due to its efficient dimensional stability after modification . keywords:, Thermally modified wood ;False Iroko

Holzforschung ◽  
2015 ◽  
Vol 69 (4) ◽  
pp. 405-413 ◽  
Author(s):  
Wang Wang ◽  
Yuan Zhu ◽  
Jinzhen Cao ◽  
Xi Guo

Abstract The aim of this study was to enhance the water repellency and dimensional stability of thermally modified wood by combining the preimpregnation of paraffin wax emulsion. To achieve this, Southern pine (SP; Pinus spp.) samples were first impregnated with paraffin wax emulsion (with 2.0% solid content) and then subjected to thermal modification (TM) in an oven at 180°C and 220°C for 4 and 8 h. The contact angle (CA), surface free energy, water absorption rate (WAR), anti-swelling efficiency (ASE), and bending properties of the control and modified samples were investigated. Moreover, the chemical and morphological alterations were analyzed by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Both the wax impregnation and TM decreased the surface wettability, water absorption, and tangential swelling, while the combination of wax and thermal treatment exhibited the best water repellency and dimensional stability, indicating the synergism between the two procedures. However, the wax preimpregnation did not affect the mechanical properties of thermally modified wood. The FTIR, SEM, and XPS analyses confirmed that the synergistic effect is mainly due to the redistribution of the paraffin wax during TM rather than its impact on the chemical changes caused by thermal degradation.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 1112 ◽  
Author(s):  
A. R. Shaikhutdinova ◽  
R. R. Safin ◽  
F. V. Nazipova ◽  
S. R. Mukhametzyanov

This paper proposes the use of an array of heat-treated wood of various species to make parametric furniture for the purpose of operation in the exterior, and on objects in conditions of high humidity. The dependence of change in the color range of thermowoods depending on the temperature and duration of treatment is presented. Experiments were carried out to study the biological stability of thermally modified wood treated by various technologies including: vacuum-convective thermal modification in superheated steam, convective thermal modification in high-pressure saturated steam, as well as in hydrophobic liquids, in flue gas and vacuum-conductive thermal-modifying. The degree of resistance of wood was determined, which allows to conclude that the mass losses of heat-treated specimens caused by the destructive action of fungi are significantly lower compared to untreated ones. The researchwas conducted to determine the numerical characteristics of microroughness of the polished surface of wood, thermally modified at different temperatures.   


Holzforschung ◽  
2013 ◽  
Vol 67 (2) ◽  
pp. 183-191 ◽  
Author(s):  
Wiesław Olek ◽  
Jerzy Majka ◽  
Łukasz Czajkowski

Abstract The hygroscopic properties of thermally modified wood have been studied in terms of adsorption and desorption processes. Poplar (Populus spp.) and European beech (Fagus sylvatica L.) were in focus. The obtained isotherms were parameterized with the models of Hailwood-Horrobin, Guggenheim-Anderson-deBoer, generalized D’Arcy and Watt, and Yanniotis and Blahovec. The changes in equilibrium moisture content (EMC) were quantified, and the accessibility of water vapor to the sorption sites was determined. The monolayer and multilayer sorption was studied and the sorption isotherms were classified. All sorption isotherms were type II, and the type was not changed after the modification. The monolayer sorption was found to be responsible for the reduction in EMC after thermal modification. The observed increase in the hysteresis coefficient was explained by the reorganization of the wood ultrastructure.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2160
Author(s):  
Milan Gaff ◽  
Hana Čekovská ◽  
Jiří Bouček ◽  
Danica Kačíková ◽  
Ivan Kubovský ◽  
...  

This paper deals with the effect of synthetic and natural flame retardants on flammability characteristics and chemical changes in thermally treated meranti wood (Shorea spp.). The basic chemical composition (extractives, lignin, holocellulose, cellulose, and hemicelluloses) was evaluated to clarify the relationships of temperature modifications (160 °C, 180 °C, and 210 °C) and incineration for 600 s. Weight loss, burning speed, the maximum burning rate, and the time to reach the maximum burning rate were evaluated. Relationships between flammable properties and chemical changes in thermally modified wood were evaluated with the Spearman correlation. The thermal modification did not confirm a positive contribution to the flammability and combustion properties of meranti wood. The effect of the synthetic retardant on all combustion properties was significantly higher compared to that of the natural retardant.


2020 ◽  
Vol 10 (22) ◽  
pp. 8231
Author(s):  
Jing-Wen Zhang ◽  
Hong-Hai Liu ◽  
Lin Yang ◽  
Tian-Qi Han ◽  
Qin Yin

Thermal modification (TM) improves the hydrophobicity, dimensional stability, and durability of wood, but TM commonly results in severe color change and mechanical strength loss as wood is treated at higher temperature. In this study, Pterocarpus macrocarpus Kurz wood was thermally modified at moderate temperature (150 °C) and higher temperature (200 °C), and subsequently TM wood at 150 °C was subjected to wax impregnation (WI), the effect of a combination of TM and WI on the hygroscopicity, dimensional stability, and mechanical properties, as well as the micro-structure of wood, were investigated and compared. The results showed that the mass loss of wood was slight at 150 °C TM, while it became severe at 200 °C TM conditions. TM conditions affected the amount of the subsequent wax impregnation; the equilibrium moisture content (EMC), water absorption ratio, and adsorption and absorption swelling of the 150 °C TM + WI group were lower than that of 200 °C TM, and presented the lowest value. Moderate temperature TM could improve the hydrophobicity and dimensional stability of wood, but WI played a key role in the improvement. TM decreased the modulus of rupture (MOR) of wood, while WI improved the MOR. TM increased the modulus of elasticity (MOE) of wood, but WI had little effect on MOE; Scanning electron microscope (SEM) observation showed that the wax was successfully impregnated into the wood interior, and presented an even distribution on the internal surfaces of wood cells; Fourier-transform infrared spectroscopy (FTIR) spectra verified the changes of –OH and C=O after TM and TM + WI, which contributed to decreasing hygroscopicity and improving the dimensional stability of the wood. Impregnated wax improved wood mechanical strength, but decreased the lightness, and deepened the color of wood. The combination of thermal modification at moderate temperature with subsequent wax impregnation is a practical approach for improving wood properties.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3224-3234
Author(s):  
Mojgan Vaziri ◽  
Dick Sandberg

This work investigated how thermal modification affects the shear strength of welded joints under different climatic conditions. The order of the thermal modification, before or after the welding, was investigated for its effect on the shear strength of the welded wood. Two groups of thermally modified specimens were prepared in a laboratory kiln under controlled conditions, one thermally modified before welding and the other after welding of the specimens. The shear strength of the specimens were measured at four different moisture contents of 10%, 12%, 16%, and 18%, and the results for the two different approaches were compared. Moreover, observations of the X-ray computed tomography scanning and digital microscopy were used to study the density profile and the structural details of the welded joints. The results showed that thermal treatment of the wood either before or after welding had a negative influence on the shear strength, and the modes of failure of the joints in mechanical tests were in most cases brittle. In the weld interface of the wood modified before welding, a rigid material similar to charcoal was produced as a result of the further degradation of wood by welding pressure and frictional motion. Welding of wood before thermal modification, however, yielded thicker and more densified joints with less susceptibility to higher moisture variations than the joints obtained by welding the thermally modified wood.


2021 ◽  
Vol 12 (1) ◽  
pp. 41-47
Author(s):  
Yu. V. Tsapko ◽  
O. Yu. Horbachova

An analysis of the process of thermal modification of wood, which was obtained by a controlled heating process, was done. The unique technological properties (durability, low hygroscopicity and dimensional stability) of thermomodified wood make it possible to use it in various scope. Due to the influence of temperature there are some chemical changes in the structures of the wood cell wall components (lignin, cellulose and hemicellulose). This leads to an increase in density, hardness, improved hydrophobicity (water repellency), thereby reducing their ability to absorb moisture and swell. The products absorb moisture gradually, are less prone to swelling and shrinkage, but still need the elastic coatings application. It is proved that heat-treated wood turns gray over time under the influence of sunlight, and therefore requires additional surface treatment with a coating. Additional protective substances application on the thermo-modified wood products surface promotes dimensional stability and protects against rapid weathering of the surface in open air conditions. The use of transparent coatings and oils does not protect the surface from discoloration during weathering. They are recommended for products are manufactured from thermomodified wood, which are operated away from direct sunlight and rain. The parameters of moisture penetration into wood are mathematically modeled on the basis of the moisture diffusion quasi-stationary equation through the polymer coating on the flat sample surface. The dynamics of moisture content changes in thermally modified wood by different schedules parameters has been experimentally studied. The obtained mathematical relations based on the experimental studies results make it possible to calculate the moisture diffusion coefficient in thermally modified wood in the presence of a polymer shell. It is established that the wax coating application on the surface of the product reduces the moisture diffusion process more than 10 times for surfaces treated at a temperature of 160 °C for 1 hour. That is, such products can be used on objects with high humidity.


BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 434-446 ◽  
Author(s):  
Josip Miklečić ◽  
Vlatka Jirouš-Rajković ◽  
Alan Antonović ◽  
Nikola Španić

This paper deals with the effect of UV light through window glass on the changes in colour of surfaces of uncoated and clear-coated thermally modified wood, and on chemical changes of surfaces of uncoated thermally modified and unmodified wood. Discoloration of the uncoated wood samples and those treated with three commercial transparent coatings (two-component polyurethane varnish, water-borne varnish, and nano-impregnation) was measured spectrophotometrically using CIELAB parameters (L*, a*, b* and DE*). FTIR spectroscopy was used to study chemical changes caused by UV irradiation. Colour change (DE*) was recorded in all tested wood samples after exposure to UV light, and the smallest discoloration was recorded in wood samples coated with two-component polyurethane varnish. FTIR spectroscopy results show that thermal treatment and exposure to UV light modified the chemical structure of wood surface and that the thermally modified samples exposed to UV light showed similar changes as unmodified samples exposed to UV light, but less pronounced.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Yu. V. Tsapko ◽  
O. Yu. Horbachova ◽  
S. M. Mazurchuk

The process of wood biological destruction is analyzed. It was found that the neglect of environmentally friendly means of bioprotection, leads to the destruction of wooden structures under the action of microorganisms. It is established that the study of wood protection conditions leads to the creation of new types of protective materials that reduce water absorption, as well as reduce the amount of substances that are the environment for the development of wood-destroying fungi. In this regard, a computational and experimental method for determining the proportion of destroyed material under the action of microorganisms using an antiseptic has been developed. The analysis of the results shows that the maximum weight loss in the case of biodegradation of untreated wood samples ranged from 7,6 to 16 %, and the weight loss of thermally modified wood samples did not exceed 3 %, antiseptic-hydrophobicizer – was less than 2 %. It was found that the protection when treated with thermally modified wood with oil-wax and azure exceeds (compared to untreated) more than 4 times in terms of biodegradation, and treatment with antiseptic-water repellent for untreated oil-wax and azure – more than 8 times. It should be noted that the presence of oil-wax and azure leads to blockage of the wood surface from the penetration of moisture or microorganisms. Therefore, the intensity of wood-destroying fungus development on the surface of various samples are differed. Obviously, such a mechanism of the protective coating influence is the factor regulating the process, which preserves the integrity of the object. On the experimental data basis and by modeling the equations, the microorganisms population dynamics in the volume of material and the function of increasing the number of dead organisms are derived. Thus, a polymer shell was created on the surface of the sample, which significantly reduced the penetration of microorganisms into the wood, and the weight loss of wood during biodegradation did not exceed 2,5 %. Additional application of protective substances on the surface increases the protection level of untreated pine wood by 72 %, thermomodified at 190 °C – 25 %, at 220 °C – by 37 %. Similar results for hornbeam wood – 60; 37 and 28 %, for oak – 50; 37 and 37 % respectively.


2019 ◽  
Vol 800 ◽  
pp. 240-245
Author(s):  
Andis Antons ◽  
Dace Cīrule ◽  
Ingeborga Andersone ◽  
Anrijs Verovkins ◽  
Edgars Kuka

Despite intensive research in wood protection, no simple wood treatment method is available for satisfactory wood protection that could ensure appropriate strength and bio-resistance of wood products during their service life. The present study is a part of a project that is aimed to improve wood service properties by combining wood thermal treatment and impregnation with copper containing preservatives. The objective of the present study was to investigate the effect of conventional modifications (thermal modification at relatively mild temperature range (150 - 180°C) and impregnation) and double-treatments (impregnation after thermal treatment and vice versa) on the bending properties of birch (Betula spp.) and pine (Pinussylvestris L.) wood. Bending strength considerably decreased after thermal modification of wood, however MOE values generally did not significantly change. Moreover, impregnation had no effect on the bending properties for both unmodified and thermally modified wood specimens. For double-treatment in which impregnation was carried out before thermal modification no changes in bending strength were observed comparing to thermally modified wood. However, MOE values of these specimens were 10 % for birch and 19 % for pine smaller comparing to just thermally modified wood. The results of double-treatment tests imply that, regarding wood bending properties, wood impregnation after thermal modification is more appropriate.


Sign in / Sign up

Export Citation Format

Share Document